Home About us Contact | |||
One-dimensional Zigzag Chain (one-dimensional + zigzag_chain)
Selected AbstractsPoly[[diaqua(,3 -3-nitrophthalato)calcium(II)] monohydrate]ACTA CRYSTALLOGRAPHICA SECTION C, Issue 10 2009Ming-Lin Guo The title 3-nitrophthalate,calcium coordination polymer, {[Ca(C8H3NO6)(H2O)2]·H2O}n, crystallizes as a one-dimensional framework. The CaII centre has a distorted pentagonal,bipyramidal geometry, being seven-coordinated by five O atoms from three different 3-nitrophthalate groups and by two water molecules, resulting in a one-dimensional zigzag chain along the a -axis direction by the interconnection of the four O atoms from the two carboxylate groups. There is a D3 water cluster composed of the coordinated and the solvent water molecules within such chains. Adjacent chains are aggregated into two-dimensional layers via hydrogen bonds in the c -axis direction. The whole three-dimensional structure is further stabilized by weak O,H...O hydrogen bonds between the O atoms of the nitro group and the water molecules. [source] Cocrystallization of two tautomers: 4-(1-{[4-(dimethylamino)benzylidene]hydrazono}ethyl)benzene-1,3-diol and 6-[(E)-1-{[4-(dimethylamino)benzylidene]hydrazino}ethylidene]-3-hydroxycyclohexa-2,4-dien-1-one (1/1)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 4 2009Zhen-Hua Wu Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol,imine form 4-(1-{[4-(dimethylamino)benzylidene]hydrazono}ethyl)benzene-1,3-diol and the keto,amine form 6-[(E)-1-{[4-(dimethylamino)benzylidene]hydrazino}ethylidene]-3-hydroxycyclohexa-2,4-dien-1-one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one-dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds. [source] Two transition metal coordination polymers of the 7,7,8,8-tetracyanoquinodimethane dianion (TCNQ2,)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2009Guangbin Wang Each of the two novel title transition metal coordination polymers, namely catena -poly[[bis{[tris(2-pyridylmethyl)amine]cobalt(II)}-,4 -7,7,8,8-tetracyanoquinodimethanide(2,)] bis[7,7,8,8-tetracyanoquinodimethanide(1,)] methanol disolvate], {[Co2(C12H4N4)(C18H18N4)2](C12H4N4)2·2CH3OH}n, (I), and catena -poly[[[[tris(2-pyridylmethyl)amine]iron(II)]-,2 -7,7,8,8-tetracyanoquinodimethanide(2,)] methanol solvate], {[Fe(C12H4N4)(C18H18N4)]·CH3OH}n, (II), contains ,4 -TPA and cis -bridging TCNQ2, ligands [TPA is tris(2-pyridylmethyl)amine and TCNQ is 7,7,8,8-tetracyanoquinodimethane], but the two compounds adopt entirely different structural motifs. Compound (I) consists of a ribbon coordination polymer featuring ,4 -TCNQ2, radical anion ligands bridging four different octahedral CoII centers. Each formula unit of the polymer is flanked by two uncoordinated TCNQ, anions and two methanol solvent molecules. All three TCNQ anions have crystallographic inversion symmetry. In (II), the 21 symmetry operator generates a one-dimensional zigzag chain of octahedral FeII centers with ,2 -TCNQ2, bridges. A methanol solvent molecule forms hydrogen bonds to one of the terminal N atoms of the bridging TCNQ2, dianion. To the best of our knowledge, these are the first examples of one-dimensional coordination polymers forming from cis coordination of two TCNQ ligands to octahedral metal centers. [source] Hydrogen-bonded supramolecule of N,N,-bis(4-pyridylmethyl)oxalamide and a zigzag chain structure of catena -poly[[[dichloridocobalt(II)]-,- N,N,-bis(4-pyridylmethyl)oxalamide-,2N4:N4,] hemihydrate]ACTA CRYSTALLOGRAPHICA SECTION C, Issue 5 2007Gene-Hsiang Lee N,N,-Bis(4-pyridylmethyl)oxalamide, C14H14N4O2, exists as a dimer which is extended into a two-dimensional network with other dimers through pyridine,amide hydrogen bonds. The crystal structure of the title coordination polymer, {[CoCl2(C14H14N4O2)]·0.5H2O}n, features a one-dimensional zigzag chain, in which the cobalt ion sits at a twofold symmetry position and adopts a tetrahedral geometry, and the bridging ligand lies on an inversion center and connects to CoII ions in a bis-monodentate mode. Furthermore, two interwoven chains create a cavity of ca 8.6 × 8.6,Å, which produces a three-dimensional channel. Water molecules are held in the channel by hydrogen bonds. [source] 1,1,-Fc(4-C6H4CO2Et)2 and its unusual salt derivative with Z, = 5, catena -[Na+]2[1,1,-Fc(4-C6H4CO2,)2]·0.6H2O [1,1,-Fc = (,5 -(C5H4)2Fe]ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2010John F. Gallagher The neutral diethyl 4,4,-(ferrocene-1,1,-diyl)dibenzoate, Fe[,5 -(C5H4)(4-C6H4CO2Et)]2 (I), yields (II) (following base hydrolysis) as the unusual complex salt poly[disodium bis[diethyl 4,4,-(ferrocene-1,1,-diyl)dibenzoate] 0.6-hydrate] or [Na+]2[Fe{,5 -(C5H4)-4-C6H4CO}2]·0.6H2O with Z, = 5. Compound (I) crystallizes in the triclinic system, space group , with two molecules having similar geometry in the asymmetric unit (Z, = 2). The salt complex (II) crystallizes in the orthorhombic system, space group Pbca, with the asymmetric unit comprising poly[decasodium pentakis[diethyl 4,4,-(ferrocene-1,1,-diyl)dibenzoate] trihydrate] or [Na+]10[Fe{,5 -(C5H4)-4-C6H4CO}2]5·3H2O. The five independent 1,1,-Fc[(4-C6H4CO2),]2 dianions stack in an offset ladder (stepped) arrangement with the ten benzoates mutually oriented cisoid towards and bonded to a central layer comprising the ten Na+ ions and three water molecules [1,1,-Fc = ,5 -(C5H4)2Fe]. The five dianions differ in the cisoid orientations of their pendant benzoate groups, with four having their ,C6H4, groups mutually oriented at interplanar angles from 0.6,(3) to 3.2,(3)° (as ,..., stacked C6 rings) and interacting principally with Na+ ions. The fifth dianion is distorted and opens up to an unprecedented ,C6H4, interplanar angle of 18.6,(3)° through bending of the two 4-C6H4CO2 groups and with several ionic interactions involving the three water molecules (arranged as one-dimensional zigzag chains in the lattice). Overall packing comprises two-dimensional layers of Na+ cations coordinated mainly by the carboxylate O atoms, and one-dimensional water chains. The non-polar Fc(C6H4)2 groups are arranged perpendicular to the layers and mutually interlock through a series of efficient C,H..., stacking contacts in a herringbone fashion to produce an overall segregation of polar and non-polar entities. [source] A structural systematic study of three isomers of difluoro- N -(4-pyridyl)benzamideACTA CRYSTALLOGRAPHICA SECTION C, Issue 9 2008Joyce McMahon The isomers 2,3-, (I), 2,4-, (II), and 2,5-difluoro- N -(4-pyridyl)benzamide, (III), all with formula C12H8F2N2O, all exhibit intramolecular C,H...O=C and N,H...F contacts [both with S(6) motifs]. In (I), intermolecular N,H...O=C interactions form one-dimensional chains along [010] [N...O = 3.0181,(16),Å], with weaker C,H...N interactions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C,H...F contacts about inversion centres; a three-dimensional herring-bone network forms via C,H...,(py) (py is pyridyl) interactions. In (II), weak aromatic C,H...N(py) interactions form one-dimensional zigzag chains along [001]; no other interactions with H...N/O/F < 2.50,Å are present, apart from long N/C,H...O=C and C,H...F contacts. In (III), N,H...N(py) interactions form one-dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C,H...,(arene) and O=C...O=C interactions and C,H...O/N/F contacts. Compound (III) is isomorphous with the parent N -(4-pyridyl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc.124, 6613,6625] and the three 2/3/4-fluoro- N -(4-pyridyl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C64, o335,o340]. The study expands our series of fluoro(pyridyl)benzamides and augments our understanding of the competition between strong hydrogen-bond formation and weaker influences on crystal packing. [source] Metal-Complex Assemblies Constructed from the Flexible Hinge-Like Ligand H2bhnq: Structural Versatility and Dynamic Behavior in the Solid StateCHEMISTRY - A EUROPEAN JOURNAL, Issue 11 2004Koichi Yamada Dr. Abstract Novel metal-complex assemblies constructed from the flexible hinge-like ligand H2bhnq (H2bhnq=2,2,-bi(3-hydroxy-1,4-naphthoquinone)) have been synthesized. The X-ray crystal structures of these compounds reveal that four types of architectures are accessible by variation of the metal ions. In copper(II) compounds 1,3, the chelating bhnq2, ions bridge copper(II) centers to form one-dimensional zigzag chains. The chains of 1,3 are arranged by hydrogen-bonding interactions and stacking interactions to produce porous structures. Cobalt(II) and zinc(II) compounds 4 and 5 form one-dimensional helical chains. In 4 and 5, the crystal packing induces spontaneous resolution of the helical chains with chiral cavities formed perpendicular to the helices. Nickel(II) compounds 6 and 7 form cyclic tetramers. The fourth architecture, a dimer (compound 8), is obtained by the reaction of zinc(II) and bhnq2, in MeOH. In these compounds, changes of the dihedral angles and the metal-coordination mode of the bhnq2, ion induce the structural versatility. The assemblies of the zigzag chains of the copper(II) compounds exhibit reversible vapochromic behavior. UV/Vis, powder X-ray diffraction, EPR, and adsorption isotherm measurements indicate that this vapochromic behavior is based on the hinge-like flexibility of the bhnq2, ion. [source] |