One-dimensional Analysis (one-dimensional + analysis)

Distribution by Scientific Domains


Selected Abstracts


Modelling of paste flows subject to liquid phase migration

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2007
M. J. Patel
Abstract Particulate pastes undergoing extrusion can exhibit differential velocities between the solid and liquid phases, termed liquid phase migration (LPM). This is observed experimentally but understanding and predictive capacity for paste and extruder design is limited. Most models for LPM feature one-dimensional analyses. Here, a two-dimensional finite element model based on soil mechanics approaches (modified Cam-Clay) was developed where the liquid and the solids skeleton are treated separately. Adaptive remeshing routines were developed to overcome the significant mesh distortion arising from the large strains inherent in extrusion. Material data to evaluate the model's behaviour were taken from the literature. The predictive capacity of the model is evaluated for different ram velocities and die entry angles (smooth walls). Results are compared with experimental findings in the literature and good qualitative agreement is found. Key results are plots of pressure contributions and extrudate liquid fraction against ram displacement, and maps of permeability, liquid velocity and voids ratio. Pore liquid pressure always dominates extrusion pressure. The relationship between extrusion geometry, ram speed and LPM is complex. Overall, for a given geometry, higher ram speeds give less migration. Pastes flowing into conical entry dies give different voids ratio distributions and do not feature static zones. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Estimating error in measuring thermal conductivity using a T-type nanosensor

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 5 2009
Yohei Ito
Abstract We discuss the measurement error caused by fabrication and measurement of a T-type nanosensor with a suspended sub-micrometer Pt hot film that was developed to measure the thermal properties of individual nanowire materials. Comparison of numerical simulation and one-dimensional analysis revealed that the thermal conductivity of nanowire material such as a carbon nanotube is calculated to be 17% lower. As an example, the thermal conductivity measurement result for a SiC nanowire is reported. The error caused by contact thermal resistance is found to depend on the contact length and can be as great as 20%. It can be said that future measuring can have higher reliability by correcting the estimated measurement error. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20228 [source]


An investigation on thermal-recycling of recycled plastic resin (spherically symmetric analysis of abrupt heating processes of a micro plastic-resin particle)

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2006
Ryuji Yamakita
Abstract A fundamental understanding of the physical properties of a micro plastic-resin particle subjected suddenly to hot combustion gas, such as the temperature history in the micro particle and its lifetime, is necessary for effectively realizing thermal recycling of recycled plastic resin. However, micro plastic particles have such small diameters, ranging from 100 µm to 200 µm, that the measurement of temperature histories within them is extremely difficult. In this paper, therefore, a spherically symmetric one-dimensional analysis is applied to the abrupt heating process of a micro plastic resin particle in a high temperature inert atmosphere. Variations of the temperature history and the lifetime with the ambient gas temperature and the initial particle diameter are numerically analyzed, by dividing the entire heating process into four independent periods; the solid heating period, the melting period, the liquid heating period, and the vaporization period. Effects of the Nusselt number on the particle lifetime are also discussed. It is found that, by suitably taking account of the influences of heat transfer properties, the proposed simplified analysis is useful for estimating the fundamental and overall temperature characteristics of a micro plastic resin particle under abrupt heating. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(4): 279,293, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20113 [source]


A spreadsheet solution of transient conduction in composite fins

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2002
E. M. A. Mokheimer
Abstract Transient heat transfer through composite fins is investigated by numerical methods. In this regard, governing differential equations of the two-dimensional fin and one-dimensional cladding are studied to examine the effect of Biot number and ratio of thermal conductivities of the fin material to the cladding, on the dimensionless temperature profiles. In addition, the use of spreadsheet programs in solving the composite fin problems is investigated in somewhat more detail with regard to the solution as well as presentation of the graphical results. The results show that one-dimensional analysis, traditionally used in fin analysis, is not applicable for composite fins, particularly when the conductivity ratio of the composite fin materials is very high. Copyright © 2002 John Wiley & Sons, Ltd. [source]