Home About us Contact | |||
OFDM Systems (ofdm + system)
Selected AbstractsNew joint frame synchronisation and carrier frequency offset estimation method for OFDM systems,EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 4 2009Zhongshan Zhang We propose a new joint frame synchronisation and carrier frequency offset estimation scheme for burst transmission mode OFDM systems. This scheme uses a central-symmetric and comb-like (CSCL) training sequence, which eases the power detection at the receiver without increasing the total training sequence power. Fine frame synchronisation as well as carrier frequency offset acquisition with a maximum acquisition range of times the sub-carrier spacing can also be performed based on the proposed CSCL training sequence, where N is the discrete Fourier transform (DFT) length and SF is an integer-valued spreading factor used to generate CSCL. The post-acquisition residual carrier frequency offset can be further estimated and corrected via a fine adjustment algorithm. In order to reduce performance loss due to the high peak-to-average power ratio (PAPR) of the CSCL training sequence, a time-domain constant-envelope (CE) training sequence is also proposed. The superior estimation accuracy of the proposed algorithm over that of the Moose algorithm and the SS (Shi and Serpedin) algorithm is proved by computer simulation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Analysis of the effects of Nyquist pulse-shaping on the performance of OFDM systems with carrier frequency offsetEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 1 2009Peng Tan An exact method for calculating the bit error rate (BER) of an uncoded orthogonal frequency-division multiplexing (OFDM) system with transmitter Nyquist pulse-shaping over AWGN channels in the presence of frequency offset is derived. This method represents a unified way to calculate the BER of this system with different one- and two-dimensional subcarrier modulation formats. The precise BER expressions are obtained using a characteristic function method. The effects of several widely referenced Nyquist pulse-shapings, including the Franks pulse, the raised-cosine pulse, the ,better than' raised-cosine (BTRC) pulse, the second-order continuous window (SOCW), the double-jump pulse and the polynomial pulse on intercarrier interference (ICI) reduction and BER improvement of the system with carrier frequency offset are examined in the AWGN channel. The dependence of the BER on the roll-off factor of the pulse employed for a specific system in the presence of frequency offset is investigated. Analysis and numerical results show that the Franks pulse exhibits the best performance among the Nyquist pulses considered in most cases. Copyright © 2008 John Wiley & Sons, Ltd. [source] Suppression of sidelobes in OFDM systems by multiple-choice sequences,EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 6 2006Ivan Cosovic In this paper, we consider the problem of out-of-band radiation in orthogonal frequency-division multiplexing (OFDM) systems caused by high sidelobes of the OFDM transmission signal. Suppression of high sidelobes in OFDM systems enables higher spectral efficiency and/or co-existence with legacy systems in the case of OFDM spectrum sharing systems. To reduce sidelobes, we propose a method termed multiple-choice sequences (MCS). It is based on the idea that transforming the original transmit sequence into a set of sequences and choosing that sequence out of the set with the lowest power in the sidelobes allows to reduce the out-of-band radiation. We describe the general principle of MCS and out of it we derive and compare several practical MCS algorithms. In addition, we shortly consider the combination of MCS sidelobe suppression method with existing sidelobe suppression methods. Numerical results show that with MCS approach OFDM sidelobes can be reduced significantly while requiring only a small amount of signalling information to be sent from transmitter to receiver. For example, in an OFDM overlay scenario sidelobes power is reduced by around 10,dB with a signalling overhead of only 14%. Copyright © 2006 AEIT. [source] Multi-user detection in OFDM systems using CDMA and multiple antennasEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 6 2003Christoph Degen This paper deals with linear multi-user detection in orthogonal frequency division multiplexing (OFDM) systems. The separation of concurrently transmitted signals is based on space division and code division multiple access (SD/CDMA). The examined OFDM schemes are compared against frequency domain equalization for single-carrier transmission schemes (SC/FDE). Both show strong similarities. Therefore in this paper, we focus on a unified treatment of multi-user detection systems based on OFDM or SC/FDE. The trade-off between exploitation of diversity and user separation is analyzed for different spreading techniques and a varying number of receive antennas. The performance is evaluated in terms of both uncoded and coded bit error ratio (BER). Furthermore, a novel time domain spreading technique for OFDM systems is proposed for which the peak-to-average transmitter power ratio (PAPR) is independent of the applied spreading code. Copyright © 2004 AEI [source] Optimum adaptive OFDM systemsEUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, Issue 3 2003Lorenzo Piazzo When Orthogonal Frequency Division Multiplexing (OFDM) is used to transmit information over a frequency selective channel, it is convenient to vary the power and the number of bits allocated to each subcarrier in order to optimize the system performance. In this paper, the three classical problems of transmission power minimization, error rate minimization and throughput maximization are investigated in a unified manner. The relations existing among these three problems are clarified and a precise definition of optimum system is given. A general and rigorous way to extend the solution of any of the three problems in order to obtain the solution of the other two is presented. This result is used to devise an efficient algorithm for the error rate minimization. Copyright © 2003 AEI. [source] A new ICI mitigation method with generalized data-allocation for OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 4 2010Jiun-Ming Wu Abstract This paper describes an ICI mitigation method based on the generalized data-allocation of (1, ,,) for orthogonal frequency division multiplexing systems. To improve the performance of the ICI mitigation for the higher-frequency offset, we propose an efficient search algorithm to generate the sub-optimal parameter , for maximizing the carrier-to-interference ratio (CIR). The CIR and bit error rate performances of the proposed method were derived in this paper. The performances with different carrier frequency offset scenarios were evaluated by computer simulations. According to the simulation results, the performance of the proposed ICI mitigation scheme is better than that of the conventional ICI self-cancellation scheme and is nearly the same as that of the ICI self-cancellation scheme for the optimal parameter ,. Additionally, the proposed ICI mitigation scheme has a dramatically reduced hardware complexity in comparison with the ICI self-cancellation scheme for the optimal parameter ,. Copyright © 2009 John Wiley & Sons, Ltd. [source] Theoretical analysis of iterative signal reconstruction for impulsive noise mitigation in OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 3 2010Nikola Rozic Abstract In this paper a theoretical analysis of the iterative signal reconstruction algorithm for impulsive noise mitigation in orthogonal frequency-division multiplexing (OFDM) systems is developed. The following main results are developed: first, analytical model for the total noise in the frequency domain, and second the model for the total noise probability density function (pdf) in the frequency domain, both defined for each step of the iterative reconstruction process. Finally, based on the pdf of the total noise, explicit expressions for BER in kth iteration are defined as well. The main intention of the paper is to present the approach to theoretical analysis of the iterative impulsive noise mitigation algorithm that has not yet been appeared in the literature, because the theoretical analysis of the noise pdf during iterations has been considered as too complex a problem. Analyses and analytical results presented in the paper are given for scenario with a fixed number of noise impulses per frame. However, this is not a handicap of the proposed approach, since all presented models can be used as building blocks for scenarios with other impulsive noise distributions including Bernoulli,Gaussian and Middleton's Class A. Copyright © 2009 John Wiley & Sons, Ltd. [source] Performance of robust symbol-timing and carrier-frequency estimation for OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 5 2009Nan-Yang YenArticle first published online: 7 NOV 200 Abstract In recent years, many maximum likelihood (ML) blind estimators have been proposed to estimate timing and frequency offsets for orthogonal frequency division multiplexing (OFDM) systems. However, the previously proposed ML blind estimators utilizing cyclic prefix do not fully characterize the random observation vector over the entire range of the timing offset and will significantly degrade the estimation performance. In this paper, we present a global ML blind estimator to compensate the estimation error. Moreover, we extend the global ML blind estimator by accumulating the ML function of the estimation parameters to achieve a better accuracy without increasing the hardware or computational complexity. The simulation results show that the proposed algorithm can significantly improve the estimation performance in both additional white Gaussian noise and ITU-R M.1225 multipath channels. Copyright © 2008 John Wiley & Sons, Ltd. [source] Low complexity bit allocation algorithm for OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 11 2008Changwook Lee Abstract A bit allocation algorithm is presented for orthogonal frequency division multiplexing (OFDM) systems. The proposed algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic,geometric means inequality. Consequently, this algorithm has a simple procedure and low computational complexity. Copyright © 2008 John Wiley & Sons, Ltd. [source] Kalman filter-based channel estimation and ICI suppression for high-mobility OFDM systemsINTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, Issue 10 2008Prerana Gupta Abstract The use of orthogonal frequency division multiplexing (OFDM) in frequency-selective fading environments has been well explored. However, OFDM is more prone to time-selective fading compared with single-carrier systems. Rapid time variations destroy the subcarrier orthogonality and introduce inter-carrier interference (ICI). Besides this, obtaining reliable channel estimates for receiver equalization is a non-trivial task in rapidly fading systems. Our work addresses the problem of channel estimation and ICI suppression by viewing the system as a state-space model. The Kalman filter is employed to estimate the channel; this is followed by a time-domain ICI mitigation filter that maximizes the signal-to-interference plus noise ratio (SINR) at the receiver. This method is seen to provide good estimation performance apart from significant SINR gain with low training overhead. Suitable bounds on the performance of the system are described; bit error rate (BER) performance over a time-invariant Rayleigh fading channel serves as the lower bound, whereas BER performance over a doubly selective system with ICI as the dominant impairment provides the upper bound. Copyright © 2008 John Wiley & Sons, Ltd. [source] |