Of Tissues (of + tissue)

Distribution by Scientific Domains

Kinds of Of Tissues

  • variety of tissue


  • Selected Abstracts


    Aldosterone Receptor Antagonism: Interface With Hyperkalemia in Heart Failure

    CONGESTIVE HEART FAILURE, Issue 5 2004
    Domenic A. Sica MD
    Aldosterone receptor antagonism (ARA) is an increasingly well-accepted element of heart failure therapy. The experimental underpinnings for the use of ARA in heart failure are strong being linked to a variety of tissue-based cardiac effects characteristic of drugs in this class. However, the benefits of ARA therapy do not come without some risk since drugs in this class are potent inhibitors of renal potassium (K+) elimination. Thus, some increment in serum K+, up to and including the development of overt hyperkalemia (typically defined as a serum K+ value in excess of 6.0 mEq/L), is to be expected whenever they are used. Hyperkalemia attributable to ARA relates to several factors including ARA dose, patient predisposition to hyperkalemia, as in the case of renal failure, and dietary intake of K+. The risk of some change in serum K+ with ARA should not be a deterrent to use of drugs in this class but, rather should prompt careful surveillance for the onset of this potentially life-threatening electrolyte disturbance. The frequency of such scrutiny should be patient-specific and based on the constellation of risk factors for hyperkalemia. [source]


    Interactions of orexins/hypocretins with adrenocortical functions

    ACTA PHYSIOLOGICA, Issue 3 2010
    S. M. Kagerer
    Abstract The neuropeptides orexin A and B (hypocretin-1 and -2) are involved in numerous central regulation processes such as energy homeostasis, sleeping behaviour and addiction. The expression of orexins and orexin receptors in a variety of tissues outside the brain and the presence of orexin A in the circulation indicate the existence of an additional peripheral orexin system. Furthermore, it is well established that orexins exert an influence on the regulation of the hypothalamus,pituitary,adrenal axis, acting both on its central and peripheral branch. In rat and human adrenal cortices the expression of both orexin receptors has been verified with a predominance of OX2R. The local expression of orexin receptors was observed to be gender specific and to be modified by plasma glucose and insulin concentrations, nutritional status as well as gonadal steroids. Various studies consistently demonstrated orexin A to enhance glucocorticoid secretion of rat and human adrenal cortices, while orexin B was found to be either less potent or ineffective. On the contrary, the influence of orexins on adrenocortical aldosterone production and cell proliferation is still more controversial. Recent findings indicate that orexins stimulate adrenocortical steroidogenesis by augmenting transcription of selective steroidogenic enzymes and proteins such as steroidogenic acute regulatory protein. Both, Gq and Gs, signalling pathways with a downstream activation of MAP kinases appear to be involved in this regulation. [source]


    Migration of mesenchymal cell fated to blastema is necessary for fish fin regeneration

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2008
    Yuki Nakatani
    Urodeles and fish have higher regeneration ability in a variety of tissues and organs than do other vertebrate species including mammals. Though many studies have aimed at identifying the cellular and molecular basis for regeneration, relatively little is known about the detailed cellular behaviors and involved molecular basis. In the present study, a small molecule inhibitor was used to analyzed the role of phosphoinositide 3-kinase (PI3K) signaling during regeneration. We showed that the inhibitor disrupted the formation of blastema including the expression of characteristic genes. The failure of blastema formation was due to the impaired migration of mesenchymal cells to the distal prospective blastema region, although it had a little affect on cell cycle activation in mesenchymal cells. Moreover, we found that the epidermal remodeling including cell proliferation, distal cell migration and Akt phosphorylation was also affected by the inhibitor, implying a possible involvement of epidermis for proper formation of blastema. From these data, we propose a model in which distinct signals that direct the cell cycle activation, mesenchymal cell migration and epidermal remodeling coordinate together to accomplish the correct blastema formation and regeneration. [source]


    Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis

    DEVELOPMENTAL DYNAMICS, Issue 7 2010
    Hsiao-Man Ivy Yu
    Abstract Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse ortholog required for axis determination. Gpr177 is a transcriptional target of Wnt that is activated to assist its subcellular distribution in a feedback regulatory loop. We, therefore, proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease. Developmental Dynamics 239:2102,2109, 2010. © 2010 Wiley-Liss, Inc. [source]


    Role for notch signaling in salivary acinar cell growth and differentiation

    DEVELOPMENTAL DYNAMICS, Issue 3 2009
    Howard Dang
    Abstract The Notch pathway is crucial for stem/progenitor cell maintenance, growth and differentiation in a variety of tissues. The Notch signaling is essential for Drosophila salivary gland development but its role in mammalian salivary gland remains unclear. The human salivary epithelial cell line, HSG, was studied to determine the role of Notch signaling in salivary epithelial cell differentiation. HSG expressed Notch 1 to 4, and the Notch ligands Jagged 1 and 2 and Delta 1. Treatment of HSG cells with inhibitors of ,-secretase, which is required for Notch cleavage and activation, blocked vimentin and cystatin S expression, an indicator of HSG differentiation. HSG differentiation was also associated with Notch downstream signal Hes-1 expression, and Hes-1 expression was inhibited by ,-secretase inhibitors. siRNA corresponding to Notch 1 to 4 was used to show that silencing of all four Notch receptors was required to inhibit HSG differentiation. Normal human submandibular gland expressed Notch 1 to 4, Jagged 1 and 2, and Delta 1, with nuclear localization indicating Notch signaling in vivo. Hes-1 was also expressed in the human tissue, with staining predominantly in the ductal cells. In salivary tissue from rats undergoing and recovering from ductal obstruction, we found that Notch receptors and ligands were expressed in the nucleus of the regenerating epithelial cells. Taken together, these data suggest that Notch signaling is critical for normal salivary gland cell growth and differentiation. Developmental Dynamics 238:724,731, 2009. © 2009 Wiley-Liss, Inc. [source]


    Segmental expression of the T-box transcription factor, Tbx2, during early somitogenesis

    DEVELOPMENTAL DYNAMICS, Issue 11 2006
    Zachary Harrelson
    Abstract Tbx2 belongs to the T-box transcription factor gene family and is expressed in a variety of tissues and structures throughout development, although not all expression domains have been thoroughly described. Two areas of segmented expression along the rostral-caudal axis of E10.5,11.5 embryos were identified as inter-somitic vessels and dorsal root ganglia. In addition, Tbx2 expression is observed during somitogenesis beginning at E9.5, both in the posterior half of prospective somites and in a progressively restricted pattern in recently formed somites. Developmental Dynamics 235:3080,3084, 2006. © 2006 Wiley-Liss, Inc. [source]


    Maternal expression and function of the Drosophila sox gene Dichaete during oogenesis

    DEVELOPMENTAL DYNAMICS, Issue 10 2006
    Ashim Mukherjee
    Abstract Members of the Sox family of DNA-binding HMG domain proteins have been shown to regulate gene transcription in a wide range of developmental processes, including sex determination, neurogenesis, and chondrogenesis. However, little is known about their potential functions in developing germline tissues. In Drosophila, the Sox protein Dichaete (a.k.a., Fish-hook) is a member of the SoxB subgroup whose HMG domain shares strong sequence similarity to that of vertebrate Sox2. Dichaete exhibits dynamic expression in embryonic and larval stages and has pleiotropic functions in a variety of tissues. In this study, we extend analyses of Dichaete function and show that expression of Dichaete protein is detected in the developing oocyte during early to mid stages of oogenesis. Strikingly, Dichaete exhibits cytoplasmic distribution and is not detected in the oocyte nucleus. Germline mosaic analyses revealed that the Dichaete gene has maternal functions that influence dorsal/ventral patterning of the egg chamber. Dichaete mutant eggs exhibit defects in formation of the dorsal appendages, differentiation of dorsal/anterior follicle cells, and mislocalization of Gurken protein and gurken mRNA. Dichaete protein was shown to possess RNA-binding capabilities, suggesting a direct post-transcriptional role in regulating RNA functions. Developmental Dynamics 235:2828,2835, 2006. © 2006 Wiley-Liss, Inc. [source]


    cadherin-6 Message expression in the nervous system of developing zebrafish

    DEVELOPMENTAL DYNAMICS, Issue 1 2006
    Qin Liu
    Abstract Cadherins are cell surface adhesion molecules that play important roles in development of a variety of tissues including the nervous system. In this study, we analyzed expression pattern of cadherin-6, a member of the type II cadherin subfamily, in the embryonic zebrafish nervous system using in situ hybridization methods. cadherin-6 message is first expressed by the neural keel, then by restricted regions in the brain and spinal cord. cadherin-6 expression in the brain transiently delineates specific brain regions. In the peripheral nervous system, cadherin-6 message is expressed by the neurogenic placodes and the dorsal root ganglia. As development proceeds, cadherin-6 expression domain and/or expression levels increased in the embryonic nervous system. Our results show that cadherin-6 expression in the zebrafish developing nervous system is both spatially and temporally regulated, implicating a role for cadherin-6 in the formation of these nervous structures. Developmental Dynamics 235:272,278, 2006. © 2005 Wiley-Liss, Inc. [source]


    Expression patterns of focal adhesion associated proteins in the developing retina

    DEVELOPMENTAL DYNAMICS, Issue 4 2002
    Ming Li
    Abstract Adhesive interactions between integrin receptors and the extracellular matrix (ECM) are intimately involved in regulating development of a variety of tissues within the organism. In the present study, we have investigated the relationships between ,1 integrin receptors and focal adhesion associated proteins during eye development. We used specific antibodies to examine the distribution of ,1 integrin ECM receptors and the cytoplasmic focal adhesion associated proteins, talin, vinculin, and paxillin in the developing Xenopus retina. Immunoblot analysis confirmed antibody specificity and indicated that ,1 integrins, talin, vinculin, and paxillin were expressed in developing retina and in the retinal-derived Xenopus XR1 glial cell line. Triple-labeling immunocytochemistry revealed that talin, vinculin, paxillin, and phosphotyrosine proteins colocalized with ,1 integrins at focal adhesions located at the termini of F-actin filaments in XR1 cells. In the retina, these focal adhesion proteins exhibited developmentally regulated expression patterns during eye morphogenesis. In the embryonic retina, immunoreactivities for focal adhesion proteins were expressed in neuroepithelial cells, and immunoreactivity was especially strong at the interface between the optic vesicle and overlying ectoderm. At later stages, these proteins were expressed throughout all retinal layers with higher levels of expression observed in the plexiform layers, optic fiber layer, and in the region of the inner and outer limiting membrane. Strong immunoreactivities for ,1 integrin, paxillin, and phosphotyrosine were expressed in the radially oriented Müller glial cells at later stages of development. These results suggest that focal adhesion-associated proteins are involved in integrin-mediated adhesion and signaling and are likely to be essential in regulating retinal morphogenesis. © 2002 Wiley-Liss, Inc. [source]


    Mast cells and their role in the neuro-immune-endocrine axis

    EXPERIMENTAL DERMATOLOGY, Issue 9 2004
    J. Bienenstock
    It has become clear that the immune and nervous systems communicate constantly to maintain homeostasis and a coordinated and continuing adaptive response to an ever-changing environment. Evidence from mast cell nerve communication, as an example of this interaction, has been obtained in a variety of tissues and circumstances, most especially in the intestine and skin. Bidirectional communication has been shown in vivo, ex vivo, in vitro and in coculture experiments involving the two cell types. Examples will be given of these various situations and involve normal physiological situations and those involved in response to infection and inflammation as well as in response to ultraviolet light. More recent examples of the importance of mast cells in the regulation of central nervous activity including the secretion of hormones by the pituitary gland, and thereby the regulation of the HPA axis as well as involvement in behavioural change will be addressed. Through its potential communication with the nervous system, the mast cell can be regarded as a sentinel cell or receptor, especially located at surfaces exposed to the environment, which specifically and non-specifically react to molecules and substances, foreign to the organism, so as to help orchestrate the complex and integrated responses required to maintain homeostasis. [source]


    UXT interacts with the transcriptional repressor protein EVI1 and suppresses cell transformation

    FEBS JOURNAL, Issue 15 2007
    Roger McGilvray
    The EVI1 transcriptional repressor is critical to the normal development of a variety of tissues and participates in the progression of acute myeloid leukaemias. The repressor domain (Rp) was used to screen an adult human kidney yeast two-hybrid library and a novel binding partner designated ubiquitously expressed transcript (UXT) was isolated. Enforced expression of UXT in Evi1-expressing Rat1 fibroblasts suppresses cell transformation and UXT may therefore be a negative regulator of Evi1 biological activity. The Rp-binding site for UXT was determined and non-UXT-binding Evi1 mutants (Evi1,706,707) were developed which retain the ability to bind the corepressor mCtBP2. Evi1,706,707 transforms Rat1 fibroblasts, showing that the interaction is not essential for Evi1-mediated cell transformation. However, Evi1,706,707 produces an increased proportion of large colonies relative to wild-type, showing that endogenous UXT has an inhibitory effect on Evi1 biological activity. Exogenous UXT still suppresses Evi1,706,707-mediated cell transformation, indicating that it inhibits cell proliferation and/or survival by both Evi1-dependent and Evi1-independent mechanisms. These observations are consistent with the growth-suppressive function attributed to UXT in human prostate cancer. Our results show that UXT suppresses cell transformation and might mediate this function by interaction and inhibition of the biological activity of cell proliferation and survival stimulatory factors like Evi1. [source]


    Tetracycline/doxycycline-induced cutaneous depressed pigmentation

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 10 2006
    Esra Adisen MD
    Pigmentary disorders are recognized adverse effects of tetracyclines. Unlike minocycline, which occasionally causes black pigmentation of a variety of tissues, tetracycline itself or doxycycline is rarely attributed to the pigmentation of skin. Herein, we report the first case report of blue-black discoloration developed within depressed acne scars following tetracycline/doxycycline therapy for acne. [source]


    Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 10 2004
    Andrés R. Sánchez DDS
    Tetracyclines (TCN) were introduced in 1948 as broad-spectrum antibiotics that may be used in the treatment of many common infections in children and adults. One of the side-effects of tetracyclines is incorporation into tissues that are calcifying at the time of their administration. They have the ability to chelate calcium ions and to be incorporated into teeth, cartilage and bone, resulting in discoloration of both the primary and permanent dentitions. This permanent discoloration varies from yellow or gray to brown depending on the dose or the type of the drug received in relation to body weight. Minocycline hydrochloride, a semisynthetic derivative of tetracycline often used for the treatment of acne, has been shown to cause pigmentation of a variety of tissues including skin, thyroid, nails, sclera, teeth, conjunctiva and bone. Adult-onset tooth discoloration following long-term ingestion of tetracycline and minocycline has also been reported. The remarkable side-effect of minocycline on the oral cavity is the singular occurrence of "black bones", "black or green roots" and blue-gray to gray hue darkening of the crowns of permanent teeth. The prevalence of tetracycline and minocycline staining is 3,6%. The mechanism of minocycline staining is still unknown. Most of the reviewed literature consisted of case reports; longitudinal clinical trials are necessary to provide more information on the prevalence, severity, etiology and clinical presentation of tetracycline and TCN-derivative staining in the adult population. [source]


    Annulus cells release ATP in response to vibratory loading in vitro

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2003
    Satoru Yamazaki
    Abstract Mechanical forces regulate the developmental path and phenotype of a variety of tissues and cultured cells. Vibratory loading as a mechanical stimulus occurs in connective tissues due to energy returned from ground reaction forces, as well as a mechanical input from use of motorized tools and vehicles. Structures in the spine may be particularly at risk when exposed to destructive vibratory stimuli. Cells from many tissues respond to mechanical stimuli, such as fluid flow, by increasing intracellular calcium concentration ([Ca2+]ic) and releasing adenosine 5,-triphosphate (ATP), extracellularly, as a mediator to activate signaling pathways. Therefore, we examined whether ATP is released from rabbit (rAN) and human (hAN) intervertebral disc annulus cells in response to vibratory loading. ATP release from annulus cells by vibratory stimulation as well as in control cells was quantitated using a firefly luciferin-luciferase assay. Cultured hAN and rAN cells had a basal level of extracellular ATP ([ATP]ec) in the range of 1,1.5 nM. Vibratory loading of hAN cells stimulated ATP release, reaching a net maximum [ATP] within 10 min of continuous vibration, and shortly thereafter, [ATP] declined and returned to below baseline level. [ATP] in the supernatant fluid of hAN cells was significantly reduced compared to the control level when the cells received vibration for longer than 15 min. In rAN cells, [ATP] was increased in response to vibratory loading, attaining a level significantly greater than that of the control after 30 min of continuous vibration. Results of the current study show that resting annulus cells secrete ATP and maintain a basal [ATP]ec. Annulus cells may use this nucleotide as a signaling messenger in an autocrine/paracrine fashion in response to vibratory loading. Rapid degradation of ATP to ADP may alternatively modulate cellular responses. It is hypothesized that exposure to repetitive, complex vibration regimens may activate signaling pathways that regulate matrix destruction in the disc. As in tendon cells, ATP may block subsequent responses to load and modulate the vibration response. Rabbit annulus cells were used as a readily obtainable source of cells in development of an animal model for testing effects of vibration on the disc. Human cells obtained from discarded surgical specimens were used to correlate responses of animal to human cells. © 2003 Wiley-Liss, Inc. [source]


    ErbB2 and EGFR are downmodulated during the differentiation of 3T3-L1 preadipocytes,,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2003
    Eleonora Pagano
    Abstract The expression of receptors belonging to the epidermal growth factor receptor subfamily has been largely studied these last years in epithelial cells mainly as involved in cell proliferation and malignant progression. Although much work has focused on the role of these growth factor receptors in the differentiation of a variety of tissues, there is little information in regards to normal stromal cells. We investigated erbB2 expression in the murine fibroblast cell line Swiss 3T3L1, which naturally or hormonally induced undergoes adipocyte differentiation. We found that the Swiss 3T3-L1 fibroblasts express erbB2, in addition to EGFR, and in a quantity comparable to or even greater than the breast cancer cell line T47D. Proliferating cells increased erbB2 and EGFR levels when reaching confluence up to 4- and 10-fold, respectively. This expression showed a significant decrease when growth-arrested cells were stimulated to differentiate with dexamethasone and isobutyl-methylxanthine. Differentiated cells presented a decreased expression of both erbB2 and EGFR regardless of whether the cells were hormonally or spontaneously differentiated. EGF stimulation of serum-starved cells increased erbB2 tyrosine phosphorylation and retarded erbB2 migration in SDS,PAGE, suggesting receptor association and activation. Heregulin-,1 and -,1, two EGF related factors, had no effect on erbB2 or EGFR phosphorylation. Although 3T3-L1 cells expressed heregulin, its specific receptors, erbB3 and erbB4, were not found. This is the first time in which erbB2 is reported to be expressed in an adipocytic cell line which does not depend on non EGF family growth factors (thyroid hormone, growth hormone, etc.) to accomplish adipose differentiation. Since erbB2 and EGFR expression were downmodulated as differentiation progressed it is conceivable that a mechanism of switching from a mitogenic to a differentiating signaling pathway may be involved, through regulation of the expression of these growth factor receptors. © 2003 Wiley-Liss, Inc. [source]


    Overexpression of MLH-1 and psoriasin genes in cutaneous angiofibromas from tuberous sclerosis complex patients

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 9 2006
    Michelangelo La Placa
    Background:, Tuberous sclerosis complex (TSC) is associated with mutations in two likely tumor-suppressor genes (TSC1 and TSC2) and characterized by the development of tumor-like growths (angiofibromas) in a variety of tissues and organs, particularly brain and skin. Methods:, Employing a DNA-microarray assay, able to detect mRNA production from 1176 different basic genes, we analyzed the gene-expression levels in a cutaneous hamartoma sample from a TSC patient. Altered gene expressions detected by microarray technology were further checked by quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) in the same material and in cutaneous hamartoma samples obtained from five other TSC patients. Results:, The results obtained by the microarray technology in one hamartoma specimen, confirmed by the RT-PCR results obtained in the same material and in five other hamartoma specimens, demonstrated that TSC-related angiofibromas exhibit significant mRNA overexpression of two genes, represented by MLH-1 and psoriasin. Conclusions:, The overexpression of MLH-1, which codes for a DNA mismatch repair protein, and psoriasin, which codes for a specific chemoattractant factor for CD4+ T cells, implicated in the pathogenesis of inflammatory skin disease, and expressed in excess during abnormal pathways of cell growth, may shed light on the pathogenesis of the proliferative skin lesion. [source]


    Effects of EP1 receptor on cerebral blood flow in the middle cerebral artery occlusion model of stroke in mice

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2007
    Sofiyan Saleem
    Abstract The lipid mediator prostaglandin E2 (PGE2) exhibits diverse biologic activity in a variety of tissues. Four PGE2 receptor subtypes (EP1,4) are involved in various physiologic and pathophysiologic conditions, but differ in tissue distribution, ligand-binding affinity, and coupling to intracellular signaling pathways. To characterize the role of the EP1 receptor, physiologic parameters (mean arterial blood pressure, pH, blood gases PaO2 and PaCO2, and body temperature), cerebral blood flow (CBF), and neuronal cell death were studied in a middle cerebral artery occlusion model of ischemic stroke in wild-type (WT) and EP1 knockout (EP1,/,) mice. The right middle cerebral artery was occluded for 60 min, and absolute CBF was measured by [14C] iodoantipyrine autoradiography. The effect of EP1 receptor on oxidative stress in neuronal cultures was investigated. Although no differences were observed in the physiologic parameters, CBF was significantly (P < 0.01) higher in EP1,/, mice than in WT mice, suggesting a role for this receptor in physiologic and pathophysiologic control of vascular tone. Similarly, neuronal cultures derived from EP1,/, mice were more resistant (90.6 ± 5.8% viability) to tert -butyl hydroperoxide-induced oxidative stress than neurons from WT mice (39.6 ± 17.2% viability). The EP1 receptor antagonist SC-51089 and calcium channel blocker verapamil each attenuated the neuronal cell death induced by PGE2. Thus, the prostanoid EP1 receptor plays a significant role in regulating CBF and neuronal cell death. These findings suggest that pharmacologic modulation of the EP1 receptor might be a means to improve CBF and neuronal survival during ischemic stroke. © 2007 Wiley-Liss, Inc. [source]


    Solubilization of the lichen metabolite (+)-usnic acid for testing in tissue culture

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2002
    Thórdís Kristmundsdóttir
    The pharmacological testing of natural products can often be hampered by the poor solubility of such compounds in non-toxic solvents. There is thus a need for a suitable agent for solubilization of natural substances to allow testing on a variety of cell lines in-vitro. Such an agent should ideally have no direct effects on any of the commonly used cell lines from a variety of tissues and mammalian species to allow proper comparison. In this study, the lichen metabolite (+)-usnic acid, a dibenzofuran derivative, was used as a prototype for an insoluble natural product with the aim of finding a solvent that was both capable of solubilizing usnic acid and was free of direct activity against a test cell line. Solubilization was measured at different pH values in various concentrations of co-solvents (glycofurol 75, propylene glycol, polyethylene glycol 400), surfactants (polysorbate 20 and Cremophor RH40), and the complexing agent 2-hydroxypropyl-,-cyclodextrin. The solubility achieved in a 20% aqueous solution was 0.11 mg mL,1 for propylene glycol, 0.19 for PEG 400, 0.27 for glycofurol 75, 0.57 for Cremophor RH40, 0.68 for 2-hydroxypropyl-,-cyclodextrin and 0.84 for polysorbate 20. The direct effects of the various solvent systems were tested on the human leukaemia cell line K-562 in a standard proliferation assay. Most of the solvents proved toxic with the exception of propylene glycol, PEG 400 and 2-hydroxypropyl-,-cyclodextrin. Anti-proliferative activity of usnic acid could be demonstrated with an ED50 (amount of substance required to reduce thymidine uptake to 50% of uptake by untreated control culture) of 4.7,g mL,1 using PEG 400 and 2-hydroxypropyl-,-cyclodextrin but only the latter gave satisfactory solubility. 2-Hydroxypropyl-,-cyclodextrin was thus identified as a solubilizing agent that fulfilled both set criteria of solubility and lack of toxicity against the test cells. [source]


    KATP channel openers: Structure-activity relationships and therapeutic potential

    MEDICINAL RESEARCH REVIEWS, Issue 2 2004
    Raimund Mannhold
    Abstract ATP-sensitive potassium channels (KATP channels) are heteromeric complexes of pore-forming inwardly rectifying potassium channel subunits and regulatory sulfonylurea receptor subunits. KATP channels were identified in a variety of tissues including muscle cells, pancreatic ,-cells, and various neurons. They are regulated by the intracellular ATP/ADP ratio; ATP induces channel inhibition and MgADP induces channel opening. Functionally, KATP channels provide a means of linking the electrical activity of a cell to its metabolic state. Shortening of the cardiac action potential, smooth muscle relaxation, inhibition of both insulin secretion, and neurotransmitter release are mediated via KATP channels. Given their many physiological functions, KATP channels represent promising drug targets. Sulfonylureas like glibenclamide block KATP channels; they are used in the therapy of type 2 diabetes. Openers of KATP channels (KCOs), for example, relax smooth muscle and induce hypotension. KCOs are chemically heterogeneous and include as different classes as the benzopyrans, cyanoguanidines, thioformamides, thiadiazines, and pyridyl nitrates. Examples for new chemical entities more recently developed as KCOs include cyclobutenediones, dihydropyridine related structures, and tertiary carbinols. © 2003 Wiley Periodicals, Inc. Med Res Rev, 24, No. 2, 213,266, 2004 [source]


    Molecular phenotype of Fragile X syndrome: FMRP, FXRPs, and protein targets

    MICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2002
    Walter E. Kaufmann
    Abstract Fragile X syndrome (FraX) is one of the most prevalent genetic causes of mental retardation. FraX is associated with an unstable expansion of a polymorphism within the 5, untranslated region of the FMR1 gene. The main consequence of this mutation is a reduction in the levels of the gene product (FMRP). FMRP is an RNA-binding protein with multiple spliced variants (isoforms) and high levels of expression in a variety of tissues, including neurons. In the latter cells, it is localized not only to the perikaryon but also to dendrites and dendritic spines. FMRP belongs to a family of proteins that includes the Fragile X Related Proteins or FXRPs. FXRPs share high homology in their functional domains with FMRP, and also associate with mRNA and components of the protein synthesis apparatus. However, FXRPs do not have the same temporo-spatial pattern of distribution (and other properties) of FMRP. Immunochemical assays have confirmed that a functionally uncompensated FMRP deficit is the essence of the FraX molecular phenotype. Here, we report our preliminary study on FXRPs levels in leukocytes from FraX males. By immunoblotting, we found that a marked reduction in FMRP levels is associated with a modest increase in FXR1P and no changes in FXR2P levels. The consequences of this reduced FMRP expression on protein synthesis, in other words, the identification of FMRP targets, can be studied by different molecular approaches including protein interaction and proteomics methods. By two-dimensional gel electrophoresis, we showed that in FraX leukocytes there is a defect in acetylation that involves prominently the regulatory protein annexin-1. Extension of current studies of the molecular phenotype to more brain-relevant tissue samples, a wider range of proteomics-based methods, and correlative analyses of FMRP homologues and FMRP targets with multiple behavioral measures, will greatly expand our understanding of FraX pathogenesis and it will help to develop and monitor new therapeutic strategies. Microsc. Res. Tech. 57:135,144, 2002. © 2002 Wiley-Liss, Inc. [source]


    Variable small protein (Vsp)-dependent and Vsp-independent pathways for glycosaminoglycan recognition by relapsing fever spirochaetes

    MOLECULAR MICROBIOLOGY, Issue 4 2000
    Loranne Magoun
    Tick-borne relapsing fever, caused by pathogenic Borrelia such as B. hermsii and B. turicatae, features recurrent episodes of bacteraemia, each of which is caused by a population of spirochaetes that expresses a different variable major protein. Relapsing fever is also associated with the infection of a variety of tissues, such as the central nervous system. In this study, we show that glycosaminoglycans (GAGs) mediate the attachment of relapsing fever spirochaetes to mammalian cells. B. hermsii strain DAH bound to immobilized heparin, and heparin and dermatan sulphate blocked bacterial binding to host cells. Bacterial binding was diminished by inhibition of host cell GAG synthesis or sulphation, or by the enzymatic removal of GAGs. GAGs mediated the attachment of relapsing fever spirochaetes to potentially relevant target cells, such as endothelial and glial cells. B. hermsii was able to attach to GAGs independently of variable major proteins, because strains expressing the variable major proteins Vsp33, Vlp7 or no variable major protein at all each recognized GAGs. Nevertheless, we found that a variable major protein of B. turicatae directly promoted GAG binding by this relapsing fever spirochaete. B. turicatae strain Oz1 serotype B, which expresses the variable major protein VspB, bound to GAGs more efficiently than did B. turicatae Oz1 serotype A, which expresses VspA. Recombinant VspB, but not VspA, bound to heparin and dermatan sulphate. Previous studies have shown that strain Oz1 serotype B grows to higher concentrations in the blood than does Oz1 serotype A. Thus, relapsing fever spirochaetes have the potential to express Vsp-dependent and Vsp-independent GAG-binding activities and, for one pair of highly related B. turicatae strains, differences in GAG binding correlate with differences in tissue tropism. [source]


    Important roles for epithelial cell peptides in hydra development

    BIOESSAYS, Issue 6 2009
    Toshio Takahashi
    Abstract It has been convincingly shown that peptides play important roles in the regulation and maintenance of a variety of tissues and organs in living animals. However, little is known concerning the potential role of peptides as signaling molecules in developmental processes. In Hydra, there is circumstantial evidence that small diffusible molecules act as morphogens in the regulation of patterning processes. In order to view the entire spectrum of peptide signaling molecules, we initiated a project aiming at the systematic identification of peptide signaling molecules in Hydra. In this review, we describe three peptide signaling molecules and one family of peptides that function as signaling molecules in the processes of axial pattern formation and neuron differentiation in Hydra. These peptides are produced by epithelial cells and are therefore termed "epitheliopeptides". We discuss the importance of epitheliopeptides in developmental processes within a subset of hydrozoans. [source]


    Pentraxins: Multifunctional proteins at the interface of innate immunity and inflammation

    BIOFACTORS, Issue 2 2009
    Livija Deban
    Abstract Pentraxins are a family of multimeric pattern recognition proteins highly conserved in evolution. On the basis of the primary structure of the protomer, pentraxins are divided into two groups: short pentraxins and long pentraxins. C reactive protein, the first pattern recognition receptor identified, and serum amyloid P component are classic short pentraxins produced in the liver in response to IL-6. Long pentraxins, including the prototype PTX3, are expressed in a variety of tissues. PTX3 is produced by a variety of cells and tissues, most notably dendritic cells and macrophages, in response to Toll-like receptor (TLR) engagement and inflammatory cytokines. Through interaction with several ligands, including selected pathogens and apoptotic cells, pentraxins play a role in complement activation, pathogen recognition and apoptotic cell clearance. In addition, PTX3 is involved in the deposition of extracellular matrix and female fertility. Unlike the classic short pentraxins CRP and SAP, PTX3 primary sequence and regulation are highly conserved in man and mouse. Thus, gene targeting identified PTX3 (and presumably other members of the family) as multifunctional soluble pattern recognition receptors acting as a nonredundant component of the humoral arm of innate immunity and involved in tuning inflammation, matrix deposition, and female fertility. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source]