Of Biological Effects (of + biological_effects)

Distribution by Scientific Domains

Kinds of Of Biological Effects

  • variety of biological effects


  • Selected Abstracts


    Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin

    FEBS JOURNAL, Issue 14 2009
    Soultana Markopoulou
    Vanadium exerts a variety of biological effects, including antiproliferative responses through activation of the respective signaling pathways and the generation of reactive oxygen species. As epidermal cells are exposed to environmental insults, human keratinocytes (HaCaT) were used to investigate the mechanism of the antiproliferative effects of vanadyl(IV) sulfate (VOSO4). Treatment of HaCaT cells with VOSO4 inhibited proliferation and induced apoptosis in a dose-dependent manner. Inhibition of proliferation was associated with downregulation of cyclins D1 and E, E2F1, and the cyclin-dependent kinase inhibitors p21Cip1/Waf1 and p27Kip1. Induction of apoptosis correlated with upregulation of the c-fos oncoprotein, changes in the expression of clusterin (CLU), an altered ratio of antiapoptotic to proapoptotic Bcl-2 protein family members, and poly(ADP-ribose) polymerase-1 cleavage. Forced overexpression of c-fos induced apoptosis in HaCaT cells that correlated with secretory CLU downregulation and upregulation of nuclear CLU (nCLU), a pro-death protein. Overexpression of Bcl-2 protected HaCaT cells from vanadium-induced apoptosis, whereas secretory CLU overexpression offered no cytoprotection. In contrast, nCLU sensitized HaCaT cells to apoptosis. Our data suggest that vanadium-mediated apoptosis was promoted by c-fos, leading to alterations in CLU isoform processing and induction of the pro-death nCLU protein. [source]


    Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors,molecular dynamics study of the activated receptor,vasopressin,G, systems

    JOURNAL OF PEPTIDE SCIENCE, Issue 3 2006
    Magdalena J., lusarz
    Abstract Vasopressin (CYFQNCPRG-NH2, AVP) is a semicyclic endogenous peptide, which exerts a variety of biological effects in mammals. The main physiological roles of AVP are the regulation of water balance and the control of blood pressure and adrenocorticotropin hormone (ACTH) secretion, mediated via three different subtypes of vasopressin receptors: V1a, V1b and V2 receptors (V1aR, V1bR and V2R, respectively). They are the members of the class A, G-protein-coupled receptors (GPCRs). AVP also modulates several behavioral and social functions. In this study, the interactions responsible for AVP binding to vasopressin V1a and V2 receptors versus the closely related oxytocin ([I3,L8]AVP, OT) receptor (OTR) have been investigated. Three-dimensional models of the activated receptors were constructed using multiple sequence alignment, followed by homology modeling using the complex of activated rhodopsin with Gt,C -terminal peptide of transducin MII-Gt(338-350) prototype as a template. AVP was docked into the receptor-G, systems. The three lowest-energy pairs of receptor-AVP-G, (two complexes per each receptor) were selected. The 1-ns unconstrained molecular dynamics (MD) of complexes embedded into the fully hydrated 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphatidylcholine (POPC) lipid bilayer was conducted in the AMBER 7.0 force field. Six relaxed receptor-AVP-G, models were obtained. The residues responsible for AVP binding to vasopressin receptors have been identified and a different mechanism of AVP binding to V2R than to V1aR has been proposed. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Histomorphometric characteristics and expression of epidermal growth factor and its receptor by epithelial cells of normal gingiva and hereditary gingival fibromatosis

    JOURNAL OF PERIODONTAL RESEARCH, Issue 3 2003
    C. S. A. Araujo
    Objective:, The objective of this study was to examine the histomorphometric features and evaluate the expression of epidermal growth factor (EGF) and transmembranic receptor (EGFr) and the proliferative potential of epithelial cells from normal and hereditary gingival fibromatosis (HGF) gingival tissues. Background:, EGF is a multifunctional cytokine with a variety of biological effects including stimulation of cell proliferation by binding to its specific EGFr. Methods:, Immunohistochemistry was performed to measure EGF and EGFr expression and the epithelial cell proliferation was determined by measuring proliferating cell nuclear antigen (PCNA). Results:, Histomorphometric evaluation indicated that in HGF the mean height of the epithelial papillae was higher compared to the normal gingiva (NG), whereas mean epithelial area and number of epithelial papillae were quite similar in both groups. The EGF and EGFr positive cells were observed in the basal, spinous and granular cell layers of both normal and HGF tissues, with a gradual reduction from the basal layer. Although the expressions of EGF and EGFr in the control group were significantly higher than those from HGF, in HGF the epithelial papilla tips showed increased number of proliferating cells and elevated expression of EGF and EGFr. There was a correlation between the proliferative potential of epithelial cells and the expression of EGF or EGFr only in the epithelial papilla tips of HGF gingiva. Conclusion:, Our data suggest that EGF and EGFr in the oral epithelium of HGF gingiva may stimulate epithelial cell proliferation, with the resultant apical migration of the oral epithelium and formation of the slender deep epithelial papillae; however, without hyperplastic alterations. [source]


    Isolation of a novel mouse gene, mSVS-1/SUSD2, reversing tumorigenic phenotypes of cancer cells in vitro

    CANCER SCIENCE, Issue 6 2007
    Tetsuo Sugahara
    We report isolation of a novel tumor-reversing gene, tentatively named SVS-1, encoding a protein of 820 amino acids with localization on the plasma membrane as a type I transmembrane protein. The gene was found among those downregulated in the activated oncogene-v-K-ras-transformed NIH3T3 cells, Ki3T3, with tumorigenic phenotype. SVS-1 protein harbors several functional domains inherent to adhesion molecules. Histochemical staining of mouse tissues using antibody raised against the protein showed the expression of the protein in restricted regions and cells, for example, strongly positive in apical membranes of epithelial cells in renal tubules and bronchial tubes. The protein inducibly expressed in human fibrosarcoma HT1080 cells and cervical carcinoma HeLa cells was found to be localized primarily on the plasma membrane, as stained with antibodies against FLAG tag in the N -terminus and against the C -terminal peptide of the protein. Expression of the protein in cells induced a variety of biological effects on cancer cells: detachment from the substratum and aggregation of cells and growth inhibition in HeLa cells, but no inhibition in non-tumorigenic mouse NIH3T3 cells. Inhibition of clonogenicity, anchorage-independent growth, migration and invasion through Matrigel was also observed. Taken together these results suggest that the SVS-1 gene is a possible tumor-reversing gene. (Cancer Sci 2007; 98: 900,908) [source]