Odor Perception (odor + perception)

Distribution by Scientific Domains


Selected Abstracts


ODOR PERCEPTION OVER LIQUID EMULSIONS CONTAINING SINGLE AROMA COMPOUNDS: EFFECTS OF AROMA CONCENTRATION AND OIL VOLUME FRACTION

JOURNAL OF SENSORY STUDIES, Issue 6 2002
CHANTAL BROSSARD
ABSTRACT This study aimed to check the hypothesis that aroma concentration in the aqueous phase of an oil-in-water emulsion controlled the odor intensity of single aroma compounds. A set of flavored oil-in-water emulsions, prepared according to a 22 experimental design (aroma concentration, oil volume fraction) with two central points, was assessed for odor intensity by a 24-member panel during four sessions. In each session, three of the four-studied aroma molecules (benzaldehyde, ethyl butyrate, linalool and acetophenone) were investigated. Whatever the aroma, the experimental data showed that the oil volume fraction of the emulsion (from 0.12 to 0.48) did not influence the odor intensity. For each emulsion composition, aroma concentrations at equilibrium in both phases were calculated using the oil-water partition coefficient of the compound. Odor intensities, estimated from aroma concentration in the aqueous phase using previously reported modeling of odor intensity above water solutions, were then compared to experimental data. It is confirmed that the perceived odor intensity is governed by the aroma concentration in the aqueous phase at the time of the trial and not by the averaged apparent concentration in the emulsion. [source]


Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway

GENES TO CELLS, Issue 6 2005
Takaaki Hirotsu
The molecular machinery that mediates odor adaptation in the olfactory neurons is well documented in various animal species. However, types of adaptation that depend on neural circuits are mostly unexplored. We report here that the Ras-MAPK pathway is essential for such a type of odor adaptation, called early adaptation, in C. elegans. Early adaptation requires a pair of AIY interneurons, which receive synaptic inputs from olfactory neurons. Mutants of the Ras-MAPK pathway show defects in early adaptation. Continued exposure to an odorant causes activation of MAP kinase not only in the olfactory neurons, but also in the AIY interneurons. While activity of the Ras-MAPK pathway in the olfactory neurons is important for odor perception, its activity in the AIY interneurons is important for odor adaptation. Our results thus reveal a dual role of the Ras-MAPK pathway in sensory processing in the nervous system of C. elegans. [source]


Differential responses to branched and unsaturated aliphatic hydrocarbons in the rat olfactory system

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2006
Sabrina L. Ho
Abstract In an effort to understand mammalian olfactory processing, we have been describing the responses to systematically different odorants in the glomerular layer of the main olfactory bulb of rats. Previously, we demonstrated chemotopically organized and distinct olfactory responses to a homologous series of straight-chained alkanes that consisted of purely hydrocarbon structures, indicating that hydrocarbon chains could serve as molecular features in the combinatorial coding of odorant information. To better understand the processing of hydrocarbon odorants, we now have examined responses to other types of chemical changes in these kinds of molecules, namely, branching and carbon,carbon bond saturation. To this end, we used the [14C]2-deoxyglucose method to determine glomerular responses to a group of eight-carbon branched alkane isomers, unsaturated octenes (double-bonded), and octynes (triple-bonded). In contrast to the differential responses we observed previously for straight-chained alkanes of differing carbon number, the rat olfactory system was not particularly sensitive to these variations in branching and bond saturation. This result was unexpected, given the distinct molecular conformations and property profiles of the odorants. The similarity in activity patterns was paralleled by a similarity in spontaneous perceptual responses measured using a habituation assay. These results demonstrate again the functional relationship between bulbar activity patterns and odor perception. The results further suggest that the olfactory system does not respond equally to all aspects of odorant chemistry, functioning as a specific, rather than a general, chemical analysis system. J. Comp. Neurol. 499:519,532, 2006. © 2006 Wiley-Liss, Inc. [source]


Enantioselectivity of the musk odor sensation

CHIRALITY, Issue 8 2001
Philip Kraft
Abstract This brief review, the summary of a talk at the Symposium on Biological Chirality 2000 in Szeged, Hungary, illustrates what chiral recognition tells us about the molecular parameters of the musk odor sensation. While the enantioselectivity of odor perception is strong evidence for the key role of proteinogenic receptors in the molecular mechanism of olfaction, the quantitative and qualitative odor differences of enantiomers are often not very pronounced, as in the case of muscone (17/26). In those cases, however, where there is strong enantiodiscrimination, we find most intense musk odorants with very low odor thresholds, such as (,)-(12R)-12-methyl-9-oxa-14-tetradecanolide (35), (12R;9Z)-12-methyl-14-tetradec-9-enolide [(R)-Nirvanolide®, 38], and (,)-(4S;7R)-1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyran [(,)-(4S;7R)-Galaxolide®, 57], the latter being rather rigid. We thus can assume the geometry of the musk receptor to be fairly complementary to these compounds, which therefore can serve as templates for the design of new musk odorants. Chirality 13:388,394, 2001. © 2001 Wiley-Liss, Inc. [source]