Octyl Ether (octyl + ether)

Distribution by Scientific Domains

Kinds of Octyl Ether

  • nitrophenyl octyl ether


  • Selected Abstracts


    Solvatochromic Analysis of Partition Coefficients in the o -Nitrophenyl Octyl Ether (o -NPOE)/Water System

    HELVETICA CHIMICA ACTA, Issue 11 2003
    Xiangli Liu
    The objective of this study was to unravel the structural properties responsible for the partitioning of solutes in o -nitrophenyl octyl ether (o -NPOE)/H2O, a new solvent system for the determination of the partition coefficients of ions. A set of 88 compounds (including drugs) was selected to allow a regular and broad distribution of property spaces. Partition coefficients in o -NPOE/H2O (log,Pnpoe) were measured by the shake-flask or the potentiometric method. Linear solvation free-energy relationship (LSER) analyses showed that Van der Waals volume, H-bond-acceptor basicity, and H-bond-donor acidity are the three molecular descriptors of solutes determining their log,Pnpoe values. The partitioning mechanism of the investigated compounds in o -NPOE/H2O is controlled by the same structural properties as it is in 1,2-dichloroethane (DCE)/H2O. ,log,Poct,npoe Values (difference between log,Poct and log,Pnpoe) express mainly dipolarity/polarizability and H-bond-donor acidity. The solvent o -NPOE is shown to be a good candidate to replace DCE in measurements of lipophilicity. [source]


    Reaction of Octyl Ether with Nitric Acid and Its Mixtures.

    CHEMINFORM, Issue 41 2002
    N. V. Svetlakov
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]


    Estimation of Ion-Pairing Constants in Plasticized Poly(vinyl chloride) Membranes Using Segmented Sandwich Membranes Technique

    ELECTROANALYSIS, Issue 17-18 2009
    Vladimir
    Abstract Segmented sandwich membrane method was used to determine ion-pairing constants for four cationic sites: tris-(2,3,4-dodecyloxy)benzenetrimethylammonium, tris-(2,3,4-dodecyloxy)benzenedimethyloctylammonium, tris-(2,3,4-dodecyloxy)benzenemethyldioctylammonium, and dimethyldioctadecylammonium with chloride, bromide, nitrate, benzene sulfonate, trichloroacetate, thiocyanate, perchlorate and picrate, as well as ion-pairing constants for two anionic sites: tetraphenylborate and tris-(2,3,4-octyloxy)benzenesulfonate with dimedrol, quinine, anapriline, and amantadine cations in poly(vinyl chloride) membranes plasticized with 2-nitrophenyl octyl ether. Ion association constants of anions with quaternary ammonium sites regularly increase from picrate to chloride along with reduction of the anion radius and with improvement of site exchanger center steric accessibility. Ion association constants of amine cations with tris-(2,3,4-octyloxy)benzenesulfonate are several orders higher than those with tetraphenylborate and regularly increase from tertiary amine to primary one. [source]


    Amperometric Sensor for Heparin: Sensing Mechanism and Application in Human Blood Plasma Analysis

    ELECTROANALYSIS, Issue 13-14 2006
    Jan Langmaier
    Abstract Voltammetric measurements of heparin at a rotating glassy carbon (GC) electrode coated with a polyvinylchloride membrane are reported. A spin-coating technique is used to prepare thin membranes (20,40,,m) with a composition of 25% (w/w) PVC, 1,1,-dimethylferrocene as a reference electron donor for the GC|membrane interface, nitrophenyl octyl ether (o -NPOE) or bis(2-ethylhexyl) sebacate (DOS) as a plasticizer, and hexadecyltrimethylammonium tetrakis(4-chlorophenyl) borate (HTMATPBCl) or tridodecylmethylammonium tetrakis(4-chlorophenyl) borate (TDMATPBCl) as a background electrolyte. It is shown that the electrodes coated with either the HTMA+/o -NPOE (DOS) or TDMA+/o -NPOE (DOS) membrane provide a comparable amperometric response towards heparin (1,10,U mL,1) in the aqueous solution of 0.1,M LiCl. However, only the membranes formulated with TDMATPBCl can be used for an amperometric assay of heparin in human blood plasma with a detection limit of 0.2,U mL,1. Effects of membrane composition, heparin concentration, rotation speed and sweep rate on the voltammetric behavior of heparin provide some insight into the sensing mechanism. Theoretical analysis of the amperometric response is outlined, and the numeric simulation of the voltammetric behavior is presented. [source]


    Amperometry of Heparin Polyion Using a Rotating Disk Electrode Coated with a Plasticized PVC Membrane

    ELECTROANALYSIS, Issue 2 2006
    Jan Langmaier
    Abstract Electrochemical method of detection of heparin polyion was developed based on voltammetry of heparin on a rotating glassy carbon (GC) electrode coated with a plasticized PVC membrane. The membrane was deposited on the GC disk by spin-coating technique using a mixture of solutions of PVC in tetrahydrofuran, and 1,1,-dimethylferrocene (DMFc) and hexadecyltrimethylammonium tetrakis(4-chlorophenyl)borate (HTMATPBCl) in o -nitrophenyl octyl ether. UV/vis reflection spectrometry was used to evaluate the membrane thickness, which exhibits a linear correlation with the membrane resistance measured by impedance spectroscopy. It is shown that this electrode can be used for amperometric or coulometric detection of heparin in aqueous samples of medically relevant concentrations (1,10,U mL,1), with a detection limit of 1.4,U mL,1. Evidence is provided indicating that the current determining step is the reversible adsorption of the ion-pair of heparin polyion with HTMA+ cation at the membrane/aqueous electrolyte interface, which is driven by oxidation of DMFc at the GC/membrane interface. [source]


    Methyl- tert -hexyl ether and methyl- tert -octyl ether as gasoline oxygenates: Anticipating widespread risks to community water supply wells,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2007
    Jeff Snelling
    Abstract The widespread contamination of groundwater resources associated with methyl- tert -butyl ether (MtBE) use has prompted a search for replacement oxygenates in gasoline. Among the alternatives currently under development are higher methyl- tert -alkyl ethers, notably methyl- tert -hexyl ether (MtHxE) and methyl- tert -octyl ether (MtOcE). As was the case with MtBE, the introduction of these ethers into fuel supplies guarantees their migration into groundwater resources. In the present study, a screening-level risk assessment compared predicted well water concentrations of these ethers to concentrations that might cause adverse effects. A physicochemical model which has been successfully applied to the prediction of MtBE concentrations in community water supply wells (CSWs) was used to predict well water concentrations of MtHxE and MtOcE. The results indicate that these ethers are likely to contaminate water supply wells at slightly lower levels than MtBE as a result of migrating from leaking underground fuel tanks to CSWs. Because very little data is available on the physicochemical and environmental properties of MtHxE and MtOcE, estimation methods were employed in conjunction with the model to predict well water concentrations. Model calculations indicated that MtHxE and MtOcE will be present in many CSWs at concentrations approaching the concentrations that have caused widespread public health concern for MtBE. Based on these results and the possibility that MtHxE and MtOcE are potential carcinogens, testing of the toxicological properties of these ethers is recommended before they are used to replace MtBE in gasoline. [source]


    Solvatochromic Analysis of Partition Coefficients in the o -Nitrophenyl Octyl Ether (o -NPOE)/Water System

    HELVETICA CHIMICA ACTA, Issue 11 2003
    Xiangli Liu
    The objective of this study was to unravel the structural properties responsible for the partitioning of solutes in o -nitrophenyl octyl ether (o -NPOE)/H2O, a new solvent system for the determination of the partition coefficients of ions. A set of 88 compounds (including drugs) was selected to allow a regular and broad distribution of property spaces. Partition coefficients in o -NPOE/H2O (log,Pnpoe) were measured by the shake-flask or the potentiometric method. Linear solvation free-energy relationship (LSER) analyses showed that Van der Waals volume, H-bond-acceptor basicity, and H-bond-donor acidity are the three molecular descriptors of solutes determining their log,Pnpoe values. The partitioning mechanism of the investigated compounds in o -NPOE/H2O is controlled by the same structural properties as it is in 1,2-dichloroethane (DCE)/H2O. ,log,Poct,npoe Values (difference between log,Poct and log,Pnpoe) express mainly dipolarity/polarizability and H-bond-donor acidity. The solvent o -NPOE is shown to be a good candidate to replace DCE in measurements of lipophilicity. [source]


    Supported liquid membranes in hollow fiber liquid-phase microextraction (LPME) , Practical considerations in the three-phase mode

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 9 2007
    Kari Folde Bårdstu
    Abstract In this work, three-phase liquid-phase microextraction (LPME) based on a supported liquid membrane (SLM) sustained in the wall of a hollow fiber was investigated with special focus on optimization of the experimental procedures in terms of recovery and repeatability. Recovery data for doxepin, amitriptyline, clomipramine, and mianserin were in the range of 67.8,79.8%. Within-day repeatability data for the four basic drugs were in the range of 4.1,7.7%. No single factor was found to be responsible for these variations, and the variability was caused by several factors related to the LPME extractions as well as to the final HPLC determination. Although the volume of the SLM varied within 0.4,3.1% RSD depending on the preparation procedure, and the volume of the acceptor solution varied within 4.8% RSD, both recoveries and repeatability were found to be relative insensitive to these variations. Thus, the handling of microliters of liquid in LPME was not a very critical factor, and the preparation of the SLM was accomplished in several different ways with comparable performance. Reuse of hollow fibers was found to suffer from matrix effects due to built-up of analytes in the SLM, whereas washing of the hollow fibers in acetone was beneficial in terms of recovery, especially for the extraction of the most hydrophobic substances. Several of the organic solvents used in the literature as SLM suffered from poor long-term stability, but silicone oil AR 20 (polyphenyl-methylsiloxane), 2-nitrophenyl octyl ether (NPOE), and dodecyl acetate (DDA) all extracted with unaltered performance even after 60 days of storage at room temperature. [source]