Home About us Contact | |||
Ocean Drilling Program (ocean + drilling_program)
Selected AbstractsCrustal underplating and its implications for subsidence and state of isostasy along the Ninetyeast Ridge hotspot trailGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2000Ingo Grevemeyer Recent seismic field work has revealed high lower-crustal velocities under Ninetyeast Ridge, Indian Ocean, indicating the presence of crustal underplating (Grevemeyer et al. 2000). We used results from Ocean Drilling Program (ODP) drill cores and cross-spectral analysis of gravity and bathymetric data to study the impact of the underplating body on the subsidence history and the mode of isostatic compensation along Ninetyeast Ridge. Compared with the adjacent Indian basin, the subsidence of Ninetyeast Ridge is profoundly anomalous. Within the first few millions of years after crustal emplacement the ridge subsided rapidly. Thereafter, however, subsidence slowed down significantly. The most reliable model of isostasy suggests loading of a thin elastic plate on and beneath the seafloor. Isostatic compensation of subsurface loading occurs at a depth of about 25 km, which is in reasonably good agreement with seismic constraints. Subsurface loading is inherently associated with buoyant forces acting on the lithosphere. The low subsidence may therefore be the superposition of cooling of the lithosphere and uplift due to buoyant material added at the base of the crust. A model including prolonged crustal growth in the form of subcrustal plutonism may account for all observations. [source] Response of mid-latitude North Pacific surface temperatures to orbital forcing and linkage to the East Asian summer monsoon and tropical ocean,atmosphere interactions,JOURNAL OF QUATERNARY SCIENCE, Issue 8 2009Masanobu Yamamoto Abstract We present a palaeoceanographic perspective of the North Pacific during the last two glacial cycles based on U -derived palaeotemperature records of IMAGES Core MD01-2421 off the coast of central Japan and cores from the Ocean Drilling Program (ODP) Sites 1014 and 1016 off the coast of California. The sea surface temperature (SST) differences between ODP Sites 1014 and 1016 (,SSTnortheastern Pacific (NEP),=,SSTODP1014 , SSTODP1016) indicate the intensity of the California Current. Comparison of ,SSTNEP and the SST from Core MD01-2421 revealed anti-phase variation; high ,SSTNEP (indicating weakening of the California Current) corresponded to low SST at the Japan margin (indicating the southward displacement of the north-western Pacific subarctic boundary and weakening of the Kuroshio Extension), and vice versa. This finding suggests that the intensity of the North Pacific subtropical gyre circulation has varied in response to precessional forcing and that this response has been linked with changes in tropical ocean,atmosphere interactions. In the precessional cycle, the SST variation derived from Core MD01-2421 lags ca. 2.5,4,ka behind the variations shown by Hulu and Sanbao stalagmite ,18O records and by the pollen temperature index from Core MD01-2421, suggesting out-of-phase variations of the North Pacific subtropical gyre circulation and the East Asian summer monsoon. These findings indicate that the behaviour of interactions between tropical ocean,atmosphere dynamics and the East Asian summer monsoon may have varied in response to the precessional cycle. Copyright © 2009 John Wiley & Sons, Ltd. [source] Late Quaternary upwelling off tropical NW Africa: new micropalaeontological evidence from ODP Hole 658C,JOURNAL OF QUATERNARY SCIENCE, Issue 3 2006Simon K. Haslett Abstract Planktonic foraminifera and radiolaria have been analysed in a Late Quaternary (40,0,ka) sediment sequence from Ocean Drilling Program (ODP) Hole 658C located under a coastal upwelling system near Cap Blanc, offshore northwest Africa, in order to document the palaeoceanographic history of the area. Temporal variations in species abundance and faunal assemblage analysis reveal a tripartite phased sequence of palaeoceanographic change through the Late Quaternary. Phase 1 spans 40,14.5,ka and is characterised by moderate upwelling, but Heinrich event 2 is distinguished as a brief episode of strengthened upwelling. Phase 2 begins with a change in a number of variables at ca. 14.5,ka and extends to ca. 5.5,ka. This phase is characterised by a general strengthening of upwelling, but may be subdivided into three minor phases including (a) the recognition of the Younger Dryas, marked by a temporary reduction in upwelling strength, followed by (b) an intensification of upwelling, and (c) upwelling and high productivity between 8 and 5.5,ka. This phase of upwelling corresponds with maximum Holocene cooling, possibly triggered by the collapse of the Laurentide ice sheet. Phase 3 extends from 5.5 to 0,ka and is characterised by weak upwelling and significant calcite dissolution. These phases are related to climatic events, particularly the African Humid Period (AHP), which is coincident with Phase 2. The AHP is characterised by increased precipitation, linked to an intensification of the African monsoon that enhances North East Trade Wind-driven coastal upwelling and is associated with the expansion of continental vegetation across North Africa. Copyright © 2006 John Wiley & Sons, Ltd. [source] TAXONOMY OF QUATERNARY DEEP-SEA OSTRACODS FROM THE WESTERN NORTH ATLANTIC OCEANPALAEONTOLOGY, Issue 4 2009MORIAKI YASUHARA Abstract:, Late Quaternary sediments from Ocean Drilling Program (ODP) Hole 1055B, Carolina Slope, western North Atlantic (32°47.041, N, 76°17.179, W; 1798 m water depth) were examined for deep-sea ostracod taxonomy. A total of 13 933 specimens were picked from 207 samples and c. 120 species were identified. Among them, 87 species were included and illustrated in this paper. Twenty-eight new species are described. The new species are: Ambocythere sturgio, Argilloecia abba, Argilloecia caju, Argilloecia keigwini, Argilloecia robinwhatleyi, Aversovalva carolinensis, Bythoceratina willemvandenboldi, Bythocythere eugeneschornikovi, Chejudocythere tenuis, Cytheropteron aielloi, Cytheropteron demenocali, Cytheropteron didieae, Cytheropteron richarddinglei, Cytheropteron fugu, Cytheropteron guerneti, Cytheropteron richardbensoni, Eucytherura hazeli, Eucytherura mayressi, Eucytherura namericana, Eucytherura spinicorona, Posacythere hunti, Paracytherois bondi, Pedicythere atroposopetasi, Pedicythere kennettopetasi, Pedicythere klothopetasi, Pedicythere lachesisopetasi, Ruggieriella mcmanusi and Xestoleberis oppoae. Taxonomic revisions of several common species were made to reduce taxonomic uncertainty in the literature. This study provides a robust taxonomic baseline for application to palaeoceanographical reconstruction and biodiversity analyses in the deep and intermediate-depth environments of the North Atlantic Ocean. [source] |