Home About us Contact | |||
Observed X-ray Emission (observed + x-ray_emission)
Selected AbstractsColliding stellar wind models with non-equilibrium ionization: X-rays from WR 147MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2007Svetozar A. Zhekov ABSTRACT The effects of non-equilibrium ionization are explicitly taken into account in a numerical model which describes colliding stellar winds (CSW) in massive binary systems. This new model is used to analyse the most recent X-ray spectra of the WR+OB binary system WR 147. The basic result is that it can adequately reproduce the observed X-ray emission (spectral shape, observed flux) but some adjustment in the stellar wind parameters is required. Namely (i) the stellar wind velocities must be higher by a factor of 1.4,1.6 and (ii) the mass loss must be reduced by a factor of ,2. The reduction factor for the mass loss is well within the uncertainties for this parameter in massive stars, but given the fact that the orbital parameters (e.g. inclination angle and eccentricity) are not well constrained for WR 147, even smaller corrections to the mass loss might be sufficient. Only CSW models with non-equilibrium ionization and equal (or nearly equal) electron and ion post-shock temperature are successful. Therefore, the analysis of the X-ray spectra of WR 147 provides evidence that the CSW shocks in this object must be collisionless. [source] Establishing the nature of companion candidates to X-ray-emitting late B-type stars,MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007S. Hubrig ABSTRACT The most favoured interpretation for the detection of X-ray emission from late B-type stars is that these stars have a yet undiscovered late-type companion (or an unbound nearby late-type star) that produces the X-rays. Several faint infrared objects at (sub)arcsecond separation from B-type stars have been uncovered in our earlier adaptive optics imaging observations, and some of them have been followed up with the high spatial resolution of the Chandra X-ray observatory, pinpointing the X-ray emitter. However, firm conclusions on their nature require a search for spectroscopic signatures of youth. Here we report on our recent ISAAC observations carried out in low-resolution spectroscopic mode. Equivalent widths have been used to obtain information on spectral types of the companions. All eight X-ray-emitting systems with late B-type primaries studied contain dwarf-like companions with spectral types later than A7. The only system in the sample where the companion turns out to be of early spectral type is not an X-ray source. These results are consistent with the assumption that the observed X-ray emission from late B-type stars is produced by an active pre-main-sequence companion star. [source] Cross-spectral analysis of the X-ray variability of Markarian 421MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2002Y. H. Zhang ABSTRACT Using the cross-spectral method, we confirm the existence of the X-ray hard lags discovered with cross-correlation function technique during a large flare of Mrk 421 observed with BeppoSAX. For the 0.1,2 versus 2,10 keV light curves, both methods suggest sub-hour hard lags. In the time domain, the degree of hard lag, i.e. the amplitude of the 3.2,10 keV photons lagging the lower energy ones, tends to increase with the decreasing energy. In the Fourier frequency domain, by investigating the cross-spectra of the 0.1,2/2,10 keV and the 2,3.2/3.2,10 keV pairs of light curves, the flare also shows hard lags at the lowest frequencies. However, with the present data, it is impossible to constrain the dependence of the lags on frequencies even though the detailed simulations demonstrate that the hard lags at the lowest frequencies probed by the flare are not an artefact of sparse sampling, Poisson and red noise. As a possible interpretation, the implication of the hard lags is discussed in the context of the interplay between the (diffusive) acceleration and synchrotron cooling of relativistic electrons responsible for the observed X-ray emission. The energy-dependent hard lags are in agreement with the expectation of an energy-dependent acceleration time-scale. The inferred magnetic field (B, 0.11 G) is consistent with the value inferred from the spectral energy distributions of the source. Future investigations with higher quality data that show whether or not the time-lags are energy-/frequency-dependent will provide a new constraint on the current models of the TeV blazars. [source] X-ray emission from GPS and CSS sourcesASTRONOMISCHE NACHRICHTEN, Issue 2-3 2009A. Siemiginowska Abstract Many X-ray observations of GigaHertz Peaked Spectrum and Compact Steep Spectrum sources have been made with Chandra X-ray Observatory and XMM-Newton Observatory over the last few years. The X-ray spectra contribute the important information to the total energy distribution of the compact radio sources. In addition the spatial resolution of Chandra allows for studies of the X-ray morphology of these sources on arcsec scales and provide a direct view of their environments. This paper gives a review of the current status of the X-ray observations and their contribution to our understanding of the nature of these compact radio sources. It also describes primary physical processes that lead to the observed X-ray emission and summarize X-ray emission properties expected from interactions between an expanding radio source and the intergalactic environment (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |