Home About us Contact | |||
Observed Alterations (observed + alteration)
Selected AbstractsAssociation between atmospheric ozone levels and damage to human nasal mucosa in Florence, ItalyENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 3 2003Stefania Pacini Abstract We evaluated the effects of urban air pollutants on human nasal mucosa over an 8-month period on 102 subjects living in Florence, Tuscany, Italy. A group of subjects living in a city with a lower level of pollution (Sassari, Sardinia, Italy) was also analyzed. Nasal mucosa cells were harvested by brushing, a noninvasive procedure. Half of the cells were used for genotoxicity studies using the alkaline comet assay, and half for morphological studies. The levels of DNA damage in the nasal mucosa were considerably higher (+73%) in the subjects living in Florence than in Sassari. High levels of atmospheric ozone in Florence air correlated with DNA damage, and to the prevalence of inflammatory pathologies of the upper respiratory tract, although the ozone concentrations were below the Italian recommended attention level. Furthermore, higher levels of DNA damage were correlated with a dysfunction in the ability to maintain a normal epithelial cell structure. These data suggest an association between ozone air levels and damage in the upper respiratory tract. It remains unclear whether ozone itself or other associated pollutants are responsible for the observed alterations. Environ. Mol. Mutagen. 42:127,135, 2003. © 2003 Wiley-Liss, Inc. [source] Cytomorphological alterations of the thymus, spleen, head-kidney, and liver in cardinal fish (Apogonidae, Teleostei) as bioindicators of stressJOURNAL OF MORPHOLOGY, Issue 1 2006Lev Fishelson Abstract Morphological and cytological alterations at the light microscope (LM) and transmission electron microscope (TEM) levels were observed in the thymus, spleen, head-kidney, and liver of cardinal fishes (Apogonidae, Teleostei) from the Gulf of Aqaba, Red Sea, sampled from a strongly polluted site at the northern end of the gulf, and compared to similar samples from a clean, reference site. At the polluted site, the most prominent change was the formation of numerous deposits of cells rich in phagosomes with lipofucin, melanin granules, and phagocytosed debris, including a high increase in number and dimensions of Hassall's corpuscles and melano-macrophage centers. The number of Hassall's corpuscles was 20 (±8.0)/mm2 and of melano-macrophage centers 18 (±4.0)/mm2 at the polluted site, and 7.0 (±4.0)/m2 vs. 5.0 (±2.0)/mm2 respectively at the reference site. In numerous instances the head kidney's melano-macrophage centers in fishes from the polluted site were encapsulated by reticulocytes, a phenomenon recognized as a marker of neoplasmosis and possible malignancy. In the spleens of fishes from the polluted site, numerous deposits of cell debris, peroxisomes, and enlarged lysosomes were also observed. The livers (hepatopancreas) of fishes from polluted waters demonstrated very strong hyperlipogeny. Many of their hepatocytes were laden with lipid vesicles, fragmented endoplasmic reticulula, and aberrant mitochondria. Although the observed alterations in the glands and liver do not indicate any immediate threat to the life of the fish, they can become crucial with respect to energy turnover and fecundity trajectories. This study strongly suggests the use of cytological alterations in vital organs, such as were observed, as pathological biomarkers to environmental stress. J. Morphol. © 2005 Wiley-Liss, Inc. [source] Ethanol Dependence Has Limited Effects on GABA or Glutamate Transporters in Rat BrainALCOHOLISM, Issue 4 2001Leslie L. Devaud Background: Neuroadaptations of GABAergic and glutamatergic systems appear to play an important role in both the acute as well as chronic effects of ethanol. Chronic ethanol intake leads to the development of ethanol tolerance and dependence that is associated with a decrease in GABAergic and an increase in glutamatergic function. The present report assessed the involvement of GABA and glutamate transporters in the chronic ethanol-induced adaptations of these two neuronal systems. Methods: Male and female rats were made ethanol dependent by 2-week administration of ethanol in a liquid diet. Levels of GABA (GAT-1, GAT-3) and glutamate (GLT-1, EAAC-1) transporters were assayed by immunoblotting. Transporter function was assessed by [3H]GABA and [3H]glutamate uptake assays. Results: Ethanol dependence did not alter levels of GABA or glutamate transporters in cerebral cortex compared with pair-fed control values. There were increases in some, but not all, transporter levels in hippocampus and hypothalamus with the development of ethanol dependence. A decreased rate of uptake was observed for GABA in cerebral cortex. There was no change in maximal GABA uptake or in glutamate uptake (Vmax). Conclusions: These results suggest that alterations in GABA and glutamate transporters have only a limited role in neuroadaptations to chronic ethanol intake in rats. However, the observed alterations were region-specific, supporting the complex responses to chronic ethanol exposure and suggesting that neuroadaptations of GABAergic and glutamatergic systems vary across the brain. [source] Neural tube defects and maternal biomarkers of folate, homocysteine, and glutathione metabolism,BIRTH DEFECTS RESEARCH, Issue 4 2006Weizhi Zhao Abstract BACKGROUND Alterations in maternal folate and homocysteine metabolism are associated with neural tube defects (NTDs). The role played by specific micronutrients and metabolites in the causal pathway leading to NTDs is not fully understood. METHODS We conducted a case-control study to investigate the association between NTDs and maternal alterations in plasma micronutrients and metabolites in two metabolic pathways: methionine remethylation and glutathione transsulfuration. Biomarkers were measured in a population-based sample of women who had NTD-affected pregnancies (n = 43) and a control group of women who had a pregnancy unaffected by a birth defect (n = 160). We compared plasma concentrations of folate, vitamin B12, vitamin B6, methionine, S-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), adenosine, homocysteine, cysteine, and reduced and oxidized glutathione between cases and controls after adjusting for lifestyle and sociodemographic factors. RESULTS Women with NTD-affected pregnancies had significantly higher plasma concentrations of SAH (29.12 vs. 23.13 nmol/liter, P = .0011), adenosine (0.323 vs. 0.255 ,mol/liter; P = .0269), homocysteine (9.40 vs. 7.56 ,mol/liter; P < .001), and oxidized glutathione (0.379 vs. 0.262 ,mol/liter; P = .0001), but lower plasma SAM concentrations (78.99 vs. 83.16 nmol/liter; P = .0172) than controls. This metabolic profile is consistent with reduced methylation capacity and increased oxidative stress in women with affected pregnancies. CONCLUSIONS Increased maternal oxidative stress and decreased methylation capacity may contribute to the occurrence of NTDs. Further analysis of relevant genetic and environmental factors is required to define the basis for these observed alterations. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source] Elastic fiber abnormalities in hypermobility type Ehlers,Danlos syndrome patients with tenascin-X mutationsCLINICAL GENETICS, Issue 4 2005MC Zweers Ehlers,Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders with characteristic skin and joint involvement. The concept that EDS is a disease of fibrillar collagen was challenged by the identification of a clinically distinct, recessive type of EDS caused by deficiency of the extracellular matrix protein tenascin-X (TNX). Interestingly, haploinsufficiency of TNX is associated with the dominantly inherited hypermobility type of EDS. In this study, we examined whether missense mutations in the TNX gene can account for some of the cases of hypermobility type EDS. Furthermore, we studied whether missense mutations or heterozygosity for truncating mutations in the TNX gene lead to alterations in the dermal connective tissue. Sequence analysis revealed three missense mutations in TNX in hypermobility type EDS patients, which were not present in 192 control alleles. Morphometric analysis of skin biopsies of these patients showed altered elastic fibers in one of them, suggesting that this missense mutation is disease causing. Light microscopic and ultrastructural changes of the elastic fibers were observed in TNX-haploinsufficient hypermobility type EDS patients, which were not found in hypermobility type EDS patients in whom TNX mutations were excluded. Our results indicate that the observed alterations in elastic fibers are specific for hypermobility type EDS patients with mutations of TNX. [source] |