Home About us Contact | |||
Obese Rats (obese + rat)
Selected AbstractsThe detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2006Robert S. Plumb Analysis of biological fluids using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) (metabonomics) can allow new insights to be gained into disease processes, with advances in chromatographic techniques enabling the detection of thousands of metabolites. In this work metabonomics has been used to investigate the metabolic processes involved in type II diabetes in the Zucker obese rat. Plasma was analyzed from three different strains, the Zucker (fa/fa) obese, Zucker lean and the lean/(fa) obese cross. Using UPLC/MS, ca. 10,000 ions were detected due to the narrow peak widths and excellent peak shapes achieved with this technology. Confidence in the chromatographic performance was demonstrated by the use of quality control standards. The positive and negative ion total ion chromatograms obtained from the three strains were readily distinguishable using multivariate statistical analysis. The greatest difference was observed between the Zucker lean and Zucker lean/(fa) rats compared to the Zucker (fa/fa) obese rats. Positive ions m/z 220 (4.36,min), 282(3.78,min), 359 (5.33,min) and 405 (7.77,min) were elevated in the plasma derived from Zucker lean rats whilst ions m/z 385 (6.80,min) and 646 (4.36,min) were at a lower concentration compared to the plasma from the Zucker (fa/fa) obese animals. Negative ions elevated in the Zucker lean rats included m/z 212 (2.30,min), 514 (2.85,min), 295 (4.39,min), 329 (3.11,min), 343 (2.86,min) and 512 (2.86,min) with ions m/z 538 (4.18,min), 568 (4.18,min), 568 (5.09,min) and 612 (4.30,min) being raised in the samples derived from Zucker (fa/fa) obese animals. The ion m/z 514 (3.85,min) was found to correspond to taurocholate, providing further support for an involvement of taurine metabolism in diabetes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetesACTA PHYSIOLOGICA, Issue 4 2009M. F. Essop Abstract Aim:, Obesity is a major contributor to the global burden of disease and is closely associated with the development of type 2 diabetes and cardiovascular diseases. This study tested the hypothesis that mitochondrial respiratory capacity of the pre-diabetic heart is decreased leading to impaired contractile function and tolerance to ischaemia/reperfusion. Methods:, Eight-week-old male Wistar rats were fed a high caloric diet for 16 weeks after which anthropometric, metabolic, cardiac and mitochondrial parameters were evaluated vs. age-matched lean controls. Cardiac function (working heart perfusions) and mitochondrial respiratory capacity were assessed at baseline and in response to acute oxygen deprivation. Results:, Rats fed the high caloric diet exhibited increased body weight and visceral fat vs. the control group. Heart weights of obese rats were also increased. Triglyceride, fasting plasma insulin and free fatty acid levels were elevated, while high-density lipoprotein cholesterol levels were reduced in the obese group. Contractile function was attenuated at baseline and further decreased after subjecting hearts to ischaemia-reperfusion. Myocardial infarct sizes were increased while ADP phosphorylation rates were diminished in obese rats. However, no differences were found for mtDNA levels and the degree of oxidative stress-induced damage. Conclusions:, These data show that decreased mitochondrial bioenergetic capacity in pre-diabetic rat hearts may impair respiratory capacity and reduce basal contractile function and tolerance to acute oxygen deprivation. [source] Adenovirus-Mediated Leptin Expression Normalises Hypertension Associated with Diet-Induced ObesityJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2010W. Zhang In our previous study, moderate increases in plasma leptin levels achieved via administration of recombinant adenovirus containing the rat leptin cDNA were shown to correct the abnormal metabolic profile in rats with diet-induced obesity, suggesting that these animals had developed resistance to the metabolic effects of leptin, which could be reversed by leptin gene over-expression. However, the effect of this therapeutic strategy on blood pressure was not investigated. The present study aimed to determine whether a moderate increase of endogenous plasma leptin levels affected arterial blood pressure in rats with diet-induced obesity and hypertension. The major finding from the present study was that the natural rise in plasma leptin with weight-gain is insufficient to counterbalance high blood pressure associated with obesity, additional increases of circulating leptin levels with adenoviral leptin gene therapy led to normalisation of blood pressure in high-fat diet-induced obese and hypertensive rats. Mechanistically, the reduction of blood pressure by leptin in obese rats was likely independent of ,-adrenergic and acetylcholinergic receptor mediation. This is the first study to demonstrate that further increases in circulating leptin levels by leptin gene transfer during obesity could reduce blood pressure. [source] Prevention of colon carcinogenesis by apple juice in vivo: Impact of juice constituents and obesityMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 10 2009Tatiana C. L. Koch Abstract It is estimated that 75,85% of all chronic diseases are linked to lifestyle-related and environmental factors. The development of colon cancer is positively associated with obesity and inversely associated with the intake of dietary fibre, fruit and vegetable. Apple juice is the most widely consumed fruit beverage in Germany. It contains a specific spectrum of polyphenols and other components that may reduce the risk of colon cancer. Epidemiologic studies suggest an inverse correlation between apple consumption and colon cancer risk, although the mechanisms for these observations are not clear. The present review summarizes the preventive potential of apple juices and different apple constituents on biomarkers related to colon carcinogenesis with special focus on the in vivo evidence and the cancer promoting condition of obesity. However, under the cancer promoting condition of obesity, apple juice did not show cancer-preventive bioactivity. In our experiments a cancer-preventive bioactivity of apple juice is lacking in rats under the cancer-promoting condition of obesity. To further investigate, whether this lack of efficacy observed in obese rats might be representative for obese individuals human intervention studies on high risk groups such as obese or diabetic individuals are of interest and will be conducted. [source] Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feedingPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 15 2010Dong Hyun Kim Abstract In this study, the effects of capsaicin on expression of skeletal muscle proteins in Sprague,Dawley rats fed with a high-fat diet (HFD) were investigated. Rats were fed a HFD with or without capsaicin treatment for 8,wk. After HFD feeding, capsaicin-treated rats weighed an average of 8% less than those of the HFD control group. Gastrocnemius muscle tissue from lean and obese rats with or without capsaicin treatment was arrayed using 2-DE for detection of HFD-associated markers. Proteomic analysis using 2-DE demonstrated that 36 spots from a total of approximately 600 matched spots showed significantly different expression; 27 spots were identified as gastrocnemius muscle proteins that had been altered in response to capsaicin feeding, and 6 spots could not be identified by mass fingerprinting. Expression of various muscle proteins was determined by immunoblot analysis for the determination of molecular mechanisms, whereby capsaicin caused inhibition of adipogenesis. Immunoblot analysis revealed increased uncoupling protein 3 (UCP3) protein expression in HFD-fed rats, whereas contents were reduced with capsaicin treatment. Compared with the HFD control group, capsaicin treatment increased phosphorylation of AMP-activated protein kinase (AMPIC) CP3 and acetyl-CoA carboxylase (ACC). To support this result, we also analyzed in vitro differential protein expression in L6 skeletal muscle cells. These data suggest that the AMPK-ACC-malonyl-CoA metabolic signaling pathway is one of the targets of capsaicin action. To the best of our knowledge, this is the first proteomic study to report on analysis of diet-induced alterations of protein expression that are essential for energy expenditure in rat muscle. [source] The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2006Robert S. Plumb Analysis of biological fluids using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) (metabonomics) can allow new insights to be gained into disease processes, with advances in chromatographic techniques enabling the detection of thousands of metabolites. In this work metabonomics has been used to investigate the metabolic processes involved in type II diabetes in the Zucker obese rat. Plasma was analyzed from three different strains, the Zucker (fa/fa) obese, Zucker lean and the lean/(fa) obese cross. Using UPLC/MS, ca. 10,000 ions were detected due to the narrow peak widths and excellent peak shapes achieved with this technology. Confidence in the chromatographic performance was demonstrated by the use of quality control standards. The positive and negative ion total ion chromatograms obtained from the three strains were readily distinguishable using multivariate statistical analysis. The greatest difference was observed between the Zucker lean and Zucker lean/(fa) rats compared to the Zucker (fa/fa) obese rats. Positive ions m/z 220 (4.36,min), 282(3.78,min), 359 (5.33,min) and 405 (7.77,min) were elevated in the plasma derived from Zucker lean rats whilst ions m/z 385 (6.80,min) and 646 (4.36,min) were at a lower concentration compared to the plasma from the Zucker (fa/fa) obese animals. Negative ions elevated in the Zucker lean rats included m/z 212 (2.30,min), 514 (2.85,min), 295 (4.39,min), 329 (3.11,min), 343 (2.86,min) and 512 (2.86,min) with ions m/z 538 (4.18,min), 568 (4.18,min), 568 (5.09,min) and 612 (4.30,min) being raised in the samples derived from Zucker (fa/fa) obese animals. The ion m/z 514 (3.85,min) was found to correspond to taurocholate, providing further support for an involvement of taurine metabolism in diabetes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Acute exercise modulates the Foxo1/PGC-1, pathway in the liver of diet-induced obesity ratsTHE JOURNAL OF PHYSIOLOGY, Issue 9 2009Eduardo R. Ropelle PGC-1, expression is a tissue-specific regulatory feature that is extremely relevant to diabetes. Several studies have shown that PGC-1, activity is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. PGC-1, and Foxo1 can physically interact with one another and represent an important signal transduction pathway that governs the synthesis of glucose in the liver. However, the effect of physical activity on PGC-1,/Foxo1 association is unknown. Here we investigate the expression of PGC-1, and the association of PGC-1,/Foxo1 in the liver of diet-induced obese rats after acute exercise. Wistar rats swam for two 3 h-long bouts, separated by a 45 min rest period. Eight hours after the acute exercise protocol, the rats were submitted to an insulin tolerance test (ITT) and biochemical and molecular analysis. Results demonstrate that acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing PGC-1, expression and PGC-1,/Foxo1 interaction in the liver of diet-induced obesity rats under fasting conditions. These phenomena are accompanied by a reduction in the expression of gluconeogenesis genes, such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate (G6Pase). Thus, these results provide new insights into the mechanism by which exercise could improve fasting hyperglycaemia. [source] Acute physical exercise reverses S -nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar ratsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2008José R. Pauli Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S -nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-long bouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S -nitrosation of insulin receptor , (IR,), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S -nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (l- N6 -(1-iminoethyl)lysine; l -NIL) simulates the effects of exercise on insulin action, insulin signalling and S -nitrosation of IR,, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S -nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity. [source] The molecular mechanism underlying the reduction in abdominal fat accumulation by licorice flavonoid oil in high fat diet-induced obese ratsANIMAL SCIENCE JOURNAL, Issue 5 2009Kazuhisa HONDA ABSTRACT Licorice (Glycyrrhiza glabra) has been widely used in traditional medicines, and its flavonoid oil (LFO) decreases abdominal adipose tissue weight in mammals. In the present study, we investigated the molecular mechanisms underlying the decrease in abdominal adipose tissue weight by LFO. LFO significantly decreased the mRNA levels of rate-limiting enzymes in the hepatic fatty acid synthetic pathway, whereas LFO significantly increased the mRNA levels of a rate-limiting enzyme in the hepatic fatty acid oxidative pathway. LFO significantly decreased the mRNA levels of sterol regulatory element-binding protein-1c (SREBP-1c) (a transcription factor that promotes hepatic fatty acid synthesis), whereas the mRNA levels of peroxisome proliferator-activated receptor-, (PPAR-,) (a transcription factor that promotes hepatic fatty acid oxidation) was significantly increased. All our findings suggest that the decrease in abdominal adipose tissue weight by LFO is mediated by the transcriptional regulation of SREBP-1c and PPAR-, in the liver. Thus, we infer that the natural ingredient LFO is a promising candidate for use as a feed additive to reduce abdominal fat accumulation in domestic animals. [source] SEQUENTIAL ACTIVATION OF THE REACTIVE OXYGEN SPECIES/ANGIOTENSINOGEN/RENIN,ANGIOTENSIN SYSTEM AXIS IN RENAL INJURY OF TYPE 2 DIABETIC RATSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2008Kayoko Miyata SUMMARY 1The present study was performed to test the hypothesis that the reactive oxygen species (ROS),angiotensinogen (AGT),renin angiotensin system (RAS) axis is sequentially activated in the development of diabetic nephropathy in Zucker diabetic fatty (ZDF) obese rats. 2Genetic pairs of male ZDF obese and control ZDF lean rats (n = 12 of each species) were killed every 3 weeks from 12 to 21 weeks of age (n = 6 at each time point). 3The ZDF obese rats developed diabetes mellitus at 12 weeks. At that time, urinary excretion rates of 8-isoprostane were similar between the groups; however, urinary 8-isoprostane levels were significantly increased at 15 weeks in ZDF obese rats compared with controls (36 ± 6 vs 15 ± 2 ng/day, respectively). At 15 weeks, protein levels of cortical angiotensinogen were similar between groups; however, cortical angiotensinogen levels were significantly increased at 18 weeks in ZDF obese rats compared with controls (relative ratio of 2.32 ± 0.21 vs 1.00 ± 0.20, respectively). At 12 weeks, angiotensin (Ang) II-like immunoreactivity was similar between groups in both the glomeruli and tubules; however, AngII-like immunoreactivity was increased significantly at 21 weeks in ZDF obese rats compared with controls (relative ratios of 1.98 ± 0.55 vs 1.00 ± 0.03, respectively, for glomeruli and 1.58 ± 0.16 vs 1.00 ± 0.13, respectively, for tubules). Moreover, at 21 weeks, the desmin-positive area in the glomeruli (0.63 ± 0.08 vs 0.22 ± 0.05%) and Masson's trichrome stain-positive area in the interstitium (4.97 ± 0.05 vs 3.18 ± 0.41%) were significantly increased in ZDF obese rats compared with controls, even though these differences had not been observed earlier. 4These data suggest that the sequential activation of the ROS,AGT,RAS axis plays an important role in the development of diabetic nephropathy in ZDF obese rats. [source] |