Oxygenase

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Oxygenase

  • haem oxygenase
  • heme oxygenase


  • Selected Abstracts


    Antioxidant and Vasodilatory Effects of Heme Oxygenase on Mesenteric Vasoreactivity Following Chronic Hypoxia

    MICROCIRCULATION, Issue 2 2009
    KAREN SWEAZEA
    ABSTRACT Objective: Chronic hypoxia (CH) results in impaired vasoconstriction associated with increased expression of heme oxygenase (HO). We hypothesized that enhanced HO activity minimizes reactive oxygen species (ROS) in arteries from CH rats, thereby normalizing endothelium-dependent vasodilation and concurrently produces carbon monoxide (CO), resulting in tonic vasodilation. Methods: ROS were quantified in mesenteric arteries from control and CH Sprague-Dawley rats. Reactivity to the endothelium-dependent vasodilator, acetylcholine (ACh), and the vasoconstrictor, phenylephrine (PE), were also assessed. Results: Basal ROS levels did not differ between groups and were similarly increased by HO inhibition. In contrast, catalase inhibition increased ROS in CH rats only. Vasodilatory responses to ACh were not different between groups. Combined inhibition of catalase and HO impaired PE-induced vasoconstriction in both groups. CH-induced impairment of vasoconstriction was reversed by either catalase or HO inhibition supporting the protective roles of the HO and catalase pathways following CH. Increased vascular smooth muscle calcium was observed with inhibition in the CH group, suggesting that catalase and HO-derived CO elicit reduced calcium influx, leading to the impaired vasoconstriction. Conclusions: Our data suggest that although the HO pathway is an important antioxidant influence, impaired vasoconstriction following CH appears to be due to effects of ROS and HO-derived CO. [source]


    Role of Vascular Heme Oxygenase in Reduced Myogenic Reactivity Following Chronic Hypoxia

    MICROCIRCULATION, Issue 2 2006
    JAY S. NAIK
    ABSTRACT Objective: Exposure to chronic hypoxia (CH) results in a persistent endothelium-dependent vascular smooth muscle hyperpolarization that diminishes vasoconstrictor reactivity. Experiments were performed to test the hypothesis that products of both cytochrome P450 epoxygenase (CYP) and heme oxygenase (HO) are required for the persistent diminished myogenic reactivity following CH. Methods: The authors examined myogenic responses of mesenteric arteries isolated from control and CH (48 h; PB = 380 mmHg) rats in the presence of a HO inhibitor (zinc protoporphyrin IX; ZnPPIX) or combined HO and CYP epoxygenase inhibition (sulfaphenazole). Arteries were isolated and cannulated and the vascular smooth muscle was loaded with the Ca2 + indicator Fura-2. Results: Control vessels maintained their internal diameter in response to step increases in intraluminal pressure, whereas arteries from CH animals passively distended. ZnPPIX augmented myogenic reactivity and [Ca2 +] in arteries from CH animals. Combined administration of sulfaphenazole and ZnPPIX did not have an additional effect compared to ZnPPIX alone. Myogenic reactivity in control vessels was not altered by ZnPPIX or ZnPPIX + sulfaphenazole. Conclusions: HO appears to play a role in regulating myogenic reactivity following CH. Furthermore, these data suggest that products of HO and CYP are both required for the observed attenuation in vasoreactivity following CH. [source]


    Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
    Laurent Marrot
    ABSTRACT Melanocytes play a central role in the response of skin to sunlight exposure. They are directly involved in UV-induced pigmentation as a defense mechanism. However, their alteration can lead to melanoma, a process where the role of sun overexposure is highly probable. The transformation process whereby UV damage may result in melanoma initiation is poorly understood, especially in terms of UV-induced genotoxicity in pigmented cells, where melanin can act either as a sunscreen or as a photosensitizer. The aim of this study was to analyze the behavior of melanocytes from fair skin under irradiation mimicking environmental sunlight in terms of spectral power distribution. To do this, normal human Caucasian melanocytes in culture were exposed to simulated solar UV (SSUV, 300,400 nm). Even at relatively high doses (until 20 min exposure, corresponding to 12 kJ/m2 UV-B and 110 kJ/m2 UV-A), cell death was limited, as shown by cell viability and low occurrence of apoptosis (caspase-3 activation). Moreover, p53 accumulation was three times lower in melanocytes than in unpigmented cells such as fibroblasts after SSUV exposure. However, an important fraction of melanocyte population was arrested in G2-M phase, and this correlated well with a high induction level of the gene GADD45, 4 h after exposure. Among the genes involved in DNA repair, gene XPC was the most inducible because its expression increased more than two-fold 15 h after a 20 min exposure, whereas expression of P48 was only slightly increased. In addition, an early induction of Heme Oxygenase 1 (HO1) gene, a typical response to oxidative stress, was also observed for the first time in melanocytes. Interestingly, this induction remained significant when melanocytes were exposed to UV-A radiation only (320,400 nm), and stimulation of melanogenesis before irradiation further increased HO1 induction. These results were obtained with normal human cells after exposure to SSUV radiation, which mimicked natural sunlight. They provide new data related to gene expression and suggest that melanin in light skin could contribute to sunlight-induced genotoxicity and maybe to melanocyte transformation. [source]


    Heme Oxygenase (HO)-1 Is Upregulated in the Nasal Mucosa With Allergic Rhinitis,

    THE LARYNGOSCOPE, Issue 3 2006
    Ahmed Elhini MD
    Abstract Background: Heme oxygenase (HO) is considered to be an antioxidant enzyme that catabolizes heme to produce carbon monoxide (CO) and biliverdin. Three isoforms of HO have been discovered. Recently, HO-1 has been found to be upregulated after allergic inflammations of the lower airway. Objective: The objective of this study was to address the expression of HO isoenzymes 1 and 2 in the nasal mucosa of patients with allergic rhinitis as well as normal control subjects. Methods: Nasal mucosa from 30 patients with persistent allergic rhinitis as well as from 10 normal volunteers was used in this study. We used immunofluorescent technique, Western blotting, and real-time quantitative polymerase chain reaction to localize and quantify the expression of these isoenzymes in normal and allergic human nasal tissues. Results: We found that HO-1 is expressed in the epithelial cells of seromucinous glands and macrophages with significant upregulation of its glandular expression in allergic rhinitis but with no difference in its macrophage expression between the study groups in contrast to HO-2 that is expressed in the vascular endothelial lining cells as well as macrophages with no marked difference between the study groups. Conclusion: We demonstrated that expression of HO-1, but not HO-2, was upregulated within the nasal tissues in allergic rhinitis inflammation, and understanding the induction of HO-1 expression may provide for better management of allergic rhinitis that involves oxidative stress. [source]


    The Biosynthesis of Vancomycin-Type Glycopeptide Antibiotics,A Model for Oxidative Side-Chain Cross-Linking by Oxygenases Coupled to the Action of Peptide Synthetases

    CHEMBIOCHEM, Issue 2 2005
    Daniel Bischoff Dr.
    Model mutants. The biosynthesis of glycopeptide antibiotics must be understood before it can be reprogrammed to generate altered antibiotics. Based on a detailed HPLC-ESI-MS analysis of linear and cyclic peptide intermediates of balhimycin biosynthesis mutants, a new model for glycopeptide assembly is suggested (see figure). We propose that the three central oxidative cyclizations by P450-dependant monooxygenases occur during peptide assembly before cleavage from the nonribosomal peptide synthetase complex. [source]


    Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. subjected to ozone and drought

    PLANT CELL & ENVIRONMENT, Issue 1 2001
    J. Pelloux
    ABSTRACT The regulation of ribulose-1,5-biphosphate carboxlase/oxygenase (Rubisco) and Rubisco activase was followed for 3 months in an experiment studying the effects of ozone and water stress on Aleppo pine. Rubisco activity was shown to be reduced by 30% in the presence of ozone, whereas no significant effect of water stress was noticed. The effect of combined stresses on Rubisco activity was similar to the effect of ozone. The changes in protein quantity of Rubisco large subunit (LSU) and Rubisco activase (RCA), compared with control plants, were similar to that of the Rubisco activity. Using homologous probes obtained by reverse transcription (RT)-polymerase chain reaction (PCR), rbcL and rca transcript quantities were quantified during the course of the experiment. RbcL and rca mRNA quantities decreased in ozone and after drought. Changes in rbcL transcript quantity in needles subjected to the combination of ozone and drought were similar to the ones detected when drought was applied alone. On the contrary, the pattern of rca changes under the combination of the two stresses was similar to that of ozone applied alone. A positive correlation existed between the effects of ozone on Rubisco activase and Rubisco LSU protein quantities, which was not so obvious by comparing transcript quantities. This could suggest a potential post-transcriptional coordinated regulation of the two proteins under stress-imposed conditions. [source]


    The age of Rubisco: the evolution of oxygenic photosynthesis

    GEOBIOLOGY, Issue 4 2007
    E. G. NISBET
    ABSTRACT The evolutionary history of oxygenesis is controversial. Form I of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in oxygen-tolerant organisms both enables them to carry out oxygenic extraction of carbon from air and enables the competitive process of photorespiration. Carbon isotopic evidence is presented from ~2.9 Ga stromatolites from Steep Rock, Ontario, Canada, ~2.9 Ga stromatolites from Mushandike, Zimbabwe, and ~2.7 Ga stromatolites in the Belingwe belt, Zimbabwe. The data imply that in all three localities the reef-building autotrophs included organisms using Form I Rubisco. This inference, though not conclusive, is supported by other geochemical evidence that these stromatolites formed in oxic conditions. Collectively, the implication is that oxygenic photosynthesizers first appeared ~2.9 Ga ago, and were abundant 2.7,2.65 Ga ago. Rubisco specificity (its preference for CO2 over O2) and compensation constraints (the limits on carbon fixation) may explain the paradox that despite the inferred evolution of oxygenesis 2.9 Ga ago, the Late Archaean air was anoxic. The atmospheric CO2:O2 ratio, and hence greenhouse warming, may reflect Form I Rubisco's specificity for CO2 over O2. The system may be bistable under the warming Sun, with liquid oceans occurring in either anoxic (H2O with abundant CH4 plus CO2) or oxic (H2O with more abundant CO2, but little CH4) greenhouse states. Transition between the two states would involve catastrophic remaking of the biosphere. Build-up of a very high atmospheric inventory of CO2 in the 2.3 Ga glaciation may have allowed the atmosphere to move up the CO2 compensation line to reach stability in an oxygen-rich system. Since then, Form I Rubisco specificity and consequent compensation limits may have maintained the long-term atmospheric disproportion between O2 and CO2, which is now close to both CO2 and O2 compensation barriers. [source]


    Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations

    GLOBAL CHANGE BIOLOGY, Issue 9 2002
    Alvaro Israel
    Abstract Growth rates, photosynthetic responses and the activity, amount and CO2 affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined for common marine macroalgae grown in seawater (containing 14.5 ± 2.1 µM CO2) or CO2 -enriched seawater (averaging 52.8 ± 19.2 µM CO2). The algae were grown in 40 L fiberglass tanks (outdoor) for 4,15 weeks and in a field experimental setup for 5 days. Growth rates of the species studied (representing the three major divisions, i.e. Chlorophyta, Rhodophyta and Phaeophyta) were generally not significantly affected by the increased CO2 concentrations in the seawater medium. Rubisco characteristics of algae cultivated in CO2 -enriched seawater were similar to those of algae grown in nonenriched seawater. The lack of response of photosynthetic traits in these aquatic plants is likely to be because of the presence of CO2 concentrating mechanisms (CCMs) which rely on HCO3, utilization, the inorganic carbon (Ci) form that dominates the total Ci pool available in seawater. Significant changes on the productivity of these particular marine algae species would not be anticipated when facing future increasing atmospheric CO2 levels. [source]


    Mechanism of low CO2 -induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942

    MOLECULAR MICROBIOLOGY, Issue 1 2008
    Takashi Nishimura
    Summary The cmp operon of the cyanobacterium Synechococcus elongatus strain PCC 7942, encoding the subunits of the ABC-type bicarbonate transporter, is activated under CO2 -limited growth conditions in a manner dependent on CmpR, a LysR family transcription factor of CbbR subfamily. The 0.7 kb long regulatory region of the operon carried a single promoter, which responded to CO2 limitation. Using the luxAB reporter system, three cis -acting elements involved in the low-CO2 activation of transcription, each consisting of a pair of LysR recognition signatures overlapping at their ends, were identified in the regulatory region. CmpR was shown to bind to the regulatory region, yielding several DNA,protein complexes in gel shift assays. Addition of ribulose-1,5-bisphosphate (> 1 mM) or 2-phosphoglycolate (> 10 ,M) enhanced the binding of CmpR in a concentration-dependent manner, promoting formation of large DNA,protein complexes. Given the involvement of O2 in adaptive responses of cyanobacteria to low-CO2 conditions, our results suggest that 2-phosphoglycolate, which is produced by oxygenation by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) of ribulose-1,5-bisphosphate under CO2 -limited conditions, acts as the co-inducer in the activation of the cmp operon by CmpR. [source]


    Adaxial/abaxial specification in the regulation of photosynthesis and stomatal opening with respect to light orientation and growth with CO2 enrichment in the C4 species Paspalum dilatatum

    NEW PHYTOLOGIST, Issue 1 2008
    Ana Sofia Soares
    Summary ,,Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 µl l,1 CO2. ,,Plant biomass was doubled as a result of growth at high CO2 and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO2 -grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. ,,An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. ,,Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf. [source]


    Development of insect-resistant transgenic rice with Cry1C*-free endosperm

    PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 9 2009
    Rongjian Ye
    Abstract BACKGROUND: Yellow stem borer (Tryporyza incertulas Walker), striped stem borer (Chilo suppressalis Walker) and leaf folder (Cnaphalocrocis medinalis Guenec) are three lepidopteran pests that cause severe damage to rice in many areas of the world. In this study, novel insect-resistant transgenic rice was developed in which Bt protein expression was nearly absent in the endosperm. The resistant gene, cry1C*, driven by the rice rbcS promoter (small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), was introduced into Zhonghua 11 (Oryza sativa L. ssp. japonica) by Agrobacterium -mediated transformation. RESULTS: A total of 83 independent transformants were obtained, 19 of which were characterised as single-copy foreign gene insertion. After preliminary screening of the T1 families of these 19 transformants in the field, six highly insect-resistant homozygous lines were selected. These six homozygous transgenic lines were field tested for resistance to leaf folders and stem borers, and for their agronomic performance. The Cry1C* protein levels in leaves and endosperm were measured by ELISA. Subsequently, the elite transgenic line RJ5 was selected; this line not only possessed high resistance to leaf folders and stem borers, normal agronomic performance, but also Cry1C* expression was only 2.6 ng g,1 in the endosperm. CONCLUSION: These results indicated that RJ5 has the potential for widespread utility in rice production. Copyright © 2009 Society of Chemical Industry [source]


    Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings

    PHYSIOLOGIA PLANTARUM, Issue 3 2009
    Huan-Xin Jiang
    Limited data are available on the effects of phosphorus (P) and aluminum (Al) interactions on Citrus spp. growth and photosynthesis. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 50, 100, 250 and 500 ,M KH2PO4× 0 and 1.2 mM AlCl3· 6H2O. Thereafter, P and Al in roots, stems and leaves, and leaf chlorophyll (Chl), CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Chl a fluorescence (OJIP) transients were measured. Under Al stress, P increased root Al, but decreased stem and leaf Al. Shoot growth is more sensitive to Al than root growth, CO2 assimilation and OJIP transients. Al decreased CO2 assimilation, Rubisco activity and Chl content, whereas it increased or did not affect intercellular CO2 concentration. Al affected CO2 assimilation more than Rubisco and Chl under 250 and 500 ,M P. Al decreased root, stem and leaf P, leaf maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but increased leaf minimum fluorescence (Fo), relative variable fluorescence at K- and I-steps. P could alleviate Al-induced increase or decrease for all these parameters. We conclude that P alleviated Al-induced inhibition of growth and impairment of the whole photosynthetic electron transport chain from photosystem II (PSII) donor side up to the reduction of end acceptors of photosystem I (PSI), thus preventing photosynthesis inhibition through increasing Al immobilization in roots and P level in roots and shoots. Al-induced impairment of the whole photosynthetic electron transport chain may be associated with growth inhibition. [source]


    Effects of long-term chilling on growth and photosynthesis of the C4 gramineae Paspalum dilatatum

    PHYSIOLOGIA PLANTARUM, Issue 1 2003
    Ana M. Cavaco
    Dallis grass (Paspalum dilatatum Poir.) is a C4/NADP-ME gramineae, previously classified as semi-tolerant to cold, although a complete study on this species acclimation process under a long-term chilling and controlled environmental conditions has never been conducted. In the present work, plants of the variety Raki maintained at 25/18°C (day/night) (control) were compared with plants under a long-term chilling at 10/8°C (day/night) (cold-acclimated) in order to investigate how growth and carbon assimilation mechanisms are engaged in P. dilatatum chilling tolerance. Although whole plant mean relative growth rate (mean RGR) and leaf growth were significantly decreased by cold exposure, chilling did not impair plant development nor favour the investment in biomass below ground. Cold-acclimated P. dilatatum cv. Raki had a lower leaf chlorophyll content, but a higher photosynthetic capacity at optimal temperatures, its range being shifted to lower values. Associated with this higher capacity to use the reducing power in CO2 assimilation, cold-acclimated plants further showed a higher capacity to oxidize the primary stable quinone electron acceptor of PSII, QA. The activity and activation of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) were not significantly affected by the long-term chilling. Cold-acclimated P. dilatatum cv. Raki apparently showed a lower transfer of excitation energy from the light-harvesting complex of photosystem II to the respective reaction centre and enhancement of radiationless energy-dissipating mechanisms at suboptimal temperatures. Overall, long-term chilling resulted in several effects that comprise responses with an intermediate character of both chilling-tolerant and ,sensitive plants, which seem to play a significant role in the survival and acclimation of P. dilatatum cv. Raki at low temperature. [source]


    Photosynthesis and its related physiological variables in the leaves of Brassica genotypes as influenced by sulphur fertilization

    PHYSIOLOGIA PLANTARUM, Issue 1 2000
    Altaf Ahmad
    In the present investigation, we examined the effect of sulphur fertilization on photosynthesis (Pn) and its related physiological variables in the leaves of field grown Brassica genotypes (Brassica juncea [L.] Czern. and Coss. cv. Pusa Jai Kisan and Brassica campestris L. cv. Pusa Gold) over a whole growing season. Sulphur fertilization significantly (P<0.05) increased the Pn rate on leaf area basis at all the growth stages over ,S treatment. The photosynthesis related variables such as soluble protein and Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) protein were significantly higher in the leaves of plants grown with +S treatment, when compared to ,S treatment. Sulphur fertilization also improved the chlorophyll, N and S content in the leaves of +S treated plants over ,S treatment. Leaf-S content was linearly correlated with Pn rate, N-content and Rubisco protein in the leaves of both genotypes. An interesting relationship between N-content and Pn rate in the leaves of ,S and +S treated plants was observed. In ,S plants, the relationship between Pn rate and N-content per unit area of fully matured leaves became non-linear when leaf-N exceeded 1.5 g m,2, while in +S plants the same remained linear. Rubisco protein was linearly related to Pn rate and leaf-N content. The ratio of Rubisco/soluble protein was lesser in the leaves of ,S treated plants than +S treated plants. The effect of sulphur fertilization on Pn is discussed in relation to improved nitrogen utilization efficiency of the plants that leads to incorporation of reduced-N into the protein, especially in Rubisco protein rather than the non-protein compounds. [source]


    Effects of growth and measurement light intensities on temperature dependence of CO2 assimilation rate in tobacco leaves

    PLANT CELL & ENVIRONMENT, Issue 3 2010
    WATARU YAMORI
    ABSTRACT Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol,1 cyt f s,1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol,1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C. [source]


    Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy

    PLANT CELL & ENVIRONMENT, Issue 5 2009
    XINYOU YIN
    ABSTRACT We appraised the literature and described an approach to estimate the parameters of the Farquhar, von Caemmerer and Berry model using measured CO2 assimilation rate (A) and photosystem II (PSII) electron transport efficiency (,2). The approach uses curve fitting to data of A and ,2 at various levels of incident irradiance (Iinc), intercellular CO2 (Ci) and O2. Estimated parameters include day respiration (Rd), conversion efficiency of Iinc into linear electron transport of PSII under limiting light [,2(LL)], electron transport capacity (Jmax), curvature factor (,) for the non-rectangular hyperbolic response of electron flux to Iinc, ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) CO2/O2 specificity (Sc/o), Rubisco carboxylation capacity (Vcmax), rate of triose phosphate utilization (Tp) and mesophyll conductance (gm). The method is used to analyse combined gas exchange and chlorophyll fluorescence measurements on leaves of various ages and positions in wheat plants grown at two nitrogen levels. Estimated Sc/o (25 °C) was 3.13 mbar µbar,1; Rd was lower than respiration in the dark; Jmax was lower and , was higher at 2% than at 21% O2; ,2(LL), Vcmax, Jmax and Tp correlated to leaf nitrogen content; and gm decreased with increasing Ci and with decreasing Iinc. Based on the parameter estimates, we surmised that there was some alternative electron transport. [source]


    Comparison of the A,Cc curve fitting methods in determining maximum ribulose 1·5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration

    PLANT CELL & ENVIRONMENT, Issue 2 2009
    ZEWEI MIAO
    ABSTRACT A review of the literature revealed that a variety of methods are currently used for fitting net assimilation of CO2,chloroplastic CO2 concentration (A,Cc) curves, resulting in considerable differences in estimating the A,Cc parameters [including maximum ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate (Vcmax), potential light saturated electron transport rate (Jmax), leaf dark respiration in the light (Rd), mesophyll conductance (gm) and triose-phosphate utilization (TPU)]. In this paper, we examined the impacts of fitting methods on the estimations of Vcmax, Jmax, TPU, Rd and gm using grid search and non-linear fitting techniques. Our results suggested that the fitting methods significantly affected the predictions of Rubisco-limited (Ac), ribulose 1,5-bisphosphate-limited (Aj) and TPU -limited (Ap) curves and leaf photosynthesis velocities because of the inconsistent estimate of Vcmax, Jmax, TPU, Rd and gm, but they barely influenced the Jmax : Vcmax, Vcmax : Rd and Jmax : TPU ratio. In terms of fitting accuracy, simplicity of fitting procedures and sample size requirement, we recommend to combine grid search and non-linear techniques to directly and simultaneously fit Vcmax, Jmax, TPU, Rd and gm with the whole A,Cc curve in contrast to the conventional method, which fits Vcmax, Rd or gm first and then solves for Vcmax, Jmax and/or TPU with Vcmax, Rd and/or gm held as constants. [source]


    The effect of temperature on C4 -type leaf photosynthesis parameters

    PLANT CELL & ENVIRONMENT, Issue 9 2007
    RAIA-SILVIA MASSAD
    ABSTRACT C4 -type photosynthesis is known to vary with growth and measurement temperatures. In an attempt to quantify its variability with measurement temperature, the photosynthetic parameters , the maximum catalytic rate of the enzyme ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) (Vcmax), the maximum catalytic rate of the enzyme phosphoenolpyruvate carboxylase (PEPC) (Vpmax) and the maximum electron transport rate (Jmax) , were examined. Maize plants were grown in climatic-controlled phytotrons, and the curves of net photosynthesis (An) versus intercellular air space CO2 concentrations (Ci), and An versus photosynthetic photon flux density (PPFD) were determined over a temperature range of 15,40 °C. Values of Vcmax, Vpmax and Jmax were computed by inversion of the von Caemmerer & Furbank photosynthesis model. Values of Vpmax and Jmax obtained at 25 °C conform to values found in the literature. Parameters for an Arrhenius equation that best fits the calculated values of Vcmax, Vpmax and Jmax are then proposed. These parameters should be further tested with C4 plants for validation. Other model key parameters such as the mesophyll cell conductance to CO2 (gi), the bundle sheath cells conductance to CO2 (gbs) and Michaelis,Menten constants for CO2 and O2 (Kc, Kp and Ko) also vary with temperature and should be better parameterized. [source]


    The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions

    PLANT CELL & ENVIRONMENT, Issue 3 2007
    ELIZABETH A. AINSWORTH
    ABSTRACT This review summarizes current understanding of the mechanisms that underlie the response of photosynthesis and stomatal conductance to elevated carbon dioxide concentration ([CO2]), and examines how downstream processes and environmental constraints modulate these two fundamental responses. The results from free-air CO2 enrichment (FACE) experiments were summarized via meta-analysis to quantify the mean responses of stomatal and photosynthetic parameters to elevated [CO2]. Elevation of [CO2] in FACE experiments reduced stomatal conductance by 22%, yet, this reduction was not associated with a similar change in stomatal density. Elevated [CO2] stimulated light-saturated photosynthesis (Asat) in C3 plants grown in FACE by an average of 31%. However, the magnitude of the increase in Asat varied with functional group and environment. Functional groups with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis at elevated [CO2] had greater potential for increases in Asat than those where photosynthesis became ribulose-1,5-bisphosphate (RubP)-limited at elevated [CO2]. Both nitrogen supply and sink capacity modulated the response of photosynthesis to elevated [CO2] through their impact on the acclimation of carboxylation capacity. Increased understanding of the molecular and biochemical mechanisms by which plants respond to elevated [CO2], and the feedback of environmental factors upon them, will improve our ability to predict ecosystem responses to rising [CO2] and increase our potential to adapt crops and managed ecosystems to future atmospheric [CO2]. [source]


    Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.)

    PLANT CELL & ENVIRONMENT, Issue 5 2006
    CATHERINE D. CAMPBELL
    ABSTRACT Phosphorus (P) is a major factor limiting the response of carbon acquisition of plants and ecosystems to increasing atmospheric CO2 content. An important consideration, however, is the effect of P deficiency at the low atmospheric CO2 content common in recent geological history, because plants adapted to these conditions may also be limited in their ability to respond to further increases in CO2 content. To ascertain the effects of low P on various components of photosynthesis, white lupin (Lupinus albus L.) was grown hydroponically at 200, 400 and 750 µmol mol,1 CO2, under sufficient and deficient P supply (250 and 0.69 µm P, respectively). Increasing growth CO2 content increased photosynthesis only under sufficient growth P. Ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) content and activation state were not reduced to the same degree as the net CO2 assimilation rate (A), and the in vivo rate of electron transport was sufficient to support photosynthesis in all cases. The rate of triose phosphate use did not appear limiting either, because all the treatments continued to respond positively to a drop in oxygen levels. We conclude that, at ambient and elevated CO2 content, photosynthesis in low-P plants appears limited by the rate of ribulose biphosphate (RuBP) regeneration, probably through inhibition of the Calvin cycle. This failure of P-deficient plants to respond to rising CO2 content above 200 µmol mol,1 indicates that P status already imposes a widespread restriction in plant responses to increases in CO2 content from the pre-industrial level to current values. [source]


    Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle

    PLANT CELL & ENVIRONMENT, Issue 3 2006
    CHRISTINE A. RAINES
    ABSTRACT The limitation to photosynthetic CO2 assimilation in C3 plants in hot, dry environments is dominated by ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) because CO2 availability is restricted and photorespiration is stimulated. Using a combination of genetic engineering and transgenic technology, three approaches to reduce photorespiration have been taken; two of these focused on increasing the carboxylation efficiency of Rubisco either by reducing the oxygenase reaction directly or by manipulating the Rubisco enzyme by concentrating CO2 in the region of Rubisco through the introduction of enzymes of the C4 pathway. The third approach attempted to reduce photorespiration directly by manipulation of enzymes in this pathway. The progress in each of these areas is discussed, and the most promising approaches are highlighted. Under saturating CO2 conditions, Rubisco did not limit photosynthesis, and limitation shifted to ribulose bisphosphate (RuBP) regeneration capacity of the C3 cycle. Transgenic analysis was used to identify the specific enzymes that may be targets for improving carbon fixation, and the way this may be exploited in the high CO2 future is considered. [source]


    Comparison of leaf structure and photosynthetic characteristics of C3 and C4Alloteropsis semialata subspecies

    PLANT CELL & ENVIRONMENT, Issue 2 2006
    O. UENO
    ABSTRACT Alloteropsis semialata (R. Br.) Hitchcock includes both C3 and C4 subspecies: the C3 subspecies eckloniana and the C4 subspecies semialata. We examined the leaf structural and photosynthetic characteristics of these plants. A. semialata ssp. semialata showed high activities of photosynthetic enzymes involved in phosphoenolpyruvate carboxykinase-type C4 photosynthesis and an anomalous Kranz anatomy. Phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase and glycine decarboxylase (GDC) were compartmentalized between the mesophyll (M) and inner bundle sheath cells, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in both cells. A. semialata ssp. eckloniana also showed an anomalous non-Kranz anatomy, in which the mestome sheath cells included abundant chloroplasts and mitochondria. Rubisco and GDC accumulated densely in the M and mestome sheath cells, whereas the levels of C4 enzymes were low. The activity levels of photorespiratory enzymes in both subspecies were intermediate between those in typical C3 and C4 plants. The values of CO2 compensation points in A. semialata ssp. semialata were within the C4 range, whereas those in A. semialata ssp. eckloniana were somewhat lower than the C3 range. These data suggest that the plants are C3 -like and C4 -like but not typical C3 and C4, and when integrated with previous findings, point to important variability in the expression of C4 physiology in this species complex. A. semialata is therefore an intriguing grass species with which to study the evolutionary linkage between C3 and C4 plants. [source]


    On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar,von Caemmerer,Berry leaf photosynthesis model

    PLANT CELL & ENVIRONMENT, Issue 2 2004
    G. J. ETHIER
    ABSTRACT Virtually all current estimates of the maximum carboxylation rate (Vcmax) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the maximum electron transport rate (Jmax) for C3 species implicitly assume an infinite CO2 transfer conductance (gi). And yet, most measurements in perennial plant species or in ageing or stressed leaves show that gi imposes a significant limitation on photosynthesis. Herein, we demonstrate that many current parameterizations of the photosynthesis model of Farquhar, von Caemmerer & Berry (Planta 149, 78,90, 1980) based on the leaf intercellular CO2 concentration (Ci) are incorrect for leaves where gi limits photosynthesis. We show how conventional A,Ci curve (net CO2 assimilation rate of a leaf ,An, as a function of Ci) fitting methods which rely on a rectangular hyperbola model under the assumption of infinite gi can significantly underestimate Vcmax for such leaves. Alternative parameterizations of the conventional method based on a single, apparent Michaelis,Menten constant for CO2 evaluated at Ci[Km(CO2)i] used for all C3 plants are also not acceptable since the relationship between Vcmax and gi is not conserved among species. We present an alternative A,Ci curve fitting method that accounts for gi through a non-rectangular hyperbola version of the model of Farquhar et al. (1980). Simulated and real examples are used to demonstrate how this new approach eliminates the errors of the conventional A,Ci curve fitting method and provides Vcmax estimates that are virtually insensitive to gi. Finally, we show how the new A,Ci curve fitting method can be used to estimate the value of the kinetic constants of Rubisco in vivo is presented [source]


    Grass cells ingested by ruminants undergo autolysis which differs from senescence: implications for grass breeding targets and livestock production

    PLANT CELL & ENVIRONMENT, Issue 10 2002
    E. M. Beha
    Abstract It is widely believed that the initial degradation of proteins contained in grazed forage is mediated by rumen micro-organisms, but the authors' recent work suggests that the plant cells themselves contribute to their own demise. In the present study the responses of Lolium perenne leaves to the rumen environment were investigated by using an in vitro system which simulates the main stresses of the rumen but from which rumen micro-organisms were excluded. Degradation of leaf protein and the accumulation of amino acids in tissue and bathing medium occurred over a time-scale that is relevant to rumen function, and in a near 1 : 1 ratio. Significant loss of nuclear material was observed after 6 h incubation and chloroplasts became morphologically more spherical as the incubation progressed. In situ localization suggested that ribulose 1,5 bisphosphate carboxylase/oxygenase was broken down within chloroplasts which from cytology were judged to be intact. We conclude from these data that plant metabolism may play a significant role in breaking down plant proteins within relatively intact organelles in the rumen. The determinations of chlorophyll content and cell viability revealed that the plant processes occurring in the simulated rumen were similar but not identical to those of natural senescence. [source]


    Changes in synthesis and degradation of Rubisco and LHCII with leaf age in rice (Oryza sativa L.) growing under supplementary UV-B radiation

    PLANT CELL & ENVIRONMENT, Issue 6 2002
    A. Takeuchi
    Abstract The effects of supplementary ultraviolet-B (UV-B) radiation on the changes in synthesis and degradation of ribulose -1,5-bisphosphate carboxylase/oxygenase (Rubisco) and light-harvesting chlorophyll a/b binding protein of PSII (LHCII) were examined, as well as mRNA levels for small and large subunits of Rubisco (rbcS and rbcL, respectively) and LHCII (cab) with leaf age in UV-sensitive rice (Norin 1) and UV-resistant rice (Sasanishiki). Both Rubisco and LHCII were actively synthesized until the leaf had fully expanded, and then decreased with increasing leaf age. Synthesis of Rubisco, but not LHCII, was significantly suppressed by UV-B in Norin 1. The degradation of Rubisco was enhanced by UV-B around the time of leaf maturation in the two cultivars. The levels of rbcS and rbcL were reduced by UV-B at the early stages after leaf emergence in both cultivars. Cab transcripts were first present at high levels in the two cultivars, but drastically decreased due to UV-B treatment immediately after leaf emergence in Norin 1. It was shown that synthesis and degradation of Rubisco and LHCII greatly changed with leaf age: Rubisco synthesis was significantly suppressed by supplementary UV-B radiation at the transcription step during the early leaf stages. It was also suggested that the difference in UV-B sensitivity in Rubisco synthesis between the two rice cultivars might be due to specific suppression both transcriptionally and post-transcriptionally. [source]


    Improved temperature response functions for models of Rubisco-limited photosynthesis

    PLANT CELL & ENVIRONMENT, Issue 2 2001
    C. J. Bernacchi
    ABSTRACT Predicting the environmental responses of leaf photosynthesis is central to many models of changes in the future global carbon cycle and terrestrial biosphere. The steady-state biochemical model of C3 photosynthesis of Farquhar et al. (Planta 149, 78,90, 1980) provides a basis for these larger scale predictions; but a weakness in the application of the model as currently parameterized is the inability to accurately predict carbon assimilation at the range of temperatures over which significant photosynthesis occurs in the natural environment. The temperature functions used in this model have been based on in vitro measurements made over a limited temperature range and require several assumptions of in vivo conditions. Since photosynthetic rates are often Rubisco-limited (ribulose, 1-5 bisphosphate carboxylase/oxygenase) under natural steady-state conditions, inaccuracies in the functions predicting Rubisco kinetic properties at different temperatures may cause significant error. In this study, transgenic tobacco containing only 10% normal levels of Rubisco were used to measure Rubisco-limited photosynthesis over a large range of CO2 concentrations. From the responses of the rate of CO2 assimilation at a wide range of temperatures, and CO2 and O2 concentrations, the temperature functions of Rubisco kinetic properties were estimated in vivo. These differed substantially from previously published functions. These new functions were then used to predict photosynthesis in lemon and found to faithfully mimic the observed pattern of temperature response. There was also a close correspondence with published C3 photosynthesis temperature responses. The results represent an improved ability to model leaf photosynthesis over a wide range of temperatures (10,40 °C) necessary for predicting carbon uptake by terrestrial C3 systems. [source]


    ,Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves

    THE PLANT JOURNAL, Issue 2 2008
    Dana E. Martínez
    Summary Massive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small ,senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30°C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves. [source]


    A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH:protochlorophyllide oxidoreductase (POR) A,

    THE PLANT JOURNAL, Issue 1 2005
    Steffen Reinbothe
    Summary NADPH:protochlorophyllide oxidoreductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide-dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Among them are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a 33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radiolabeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of 35S-Oep16/Ptc16 is stimulated by GTP. 35S-Oep16/Ptc16 forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photooxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import. [source]


    Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement

    AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, Issue 2010
    J. FLEXAS
    Abstract Improving water use efficiency (WUE) in grapevines is essential for vineyard sustainability under the increasing aridity induced by global climate change. WUE reflects the ratio between the carbon assimilated by photosynthesis and the water lost in transpiration. Maintaining stomata partially closed by regulated deficit irrigation or partial root drying represents an opportunity to increase WUE, although at the expense of decreased photosynthesis and, potentially, decreased yield. It would be even better to achieve increases in WUE by improving photosynthesis without increasing water loses. Although this is not yet possible, it could potentially be achieved by genetic engineering. This review presents current knowledge and relevant results that aim to improve WUE in grapevines by biotechnology and genetic engineering. The expected benefits of these manipulations on WUE of grapevines under water stress conditions are modelled. There are two main possible approaches to achieve this goal: (i) to improve CO2 diffusion to the sites of carboxylation without increasing stomatal conductance; and (ii) to improve the carboxylation efficiency of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The first goal could be attained by increasing mesophyll conductance to CO2, which partly depends on aquaporins. The second approach could be achieved by replacing Rubisco from grapevine with Rubiscos from other C3 species with higher specificity for CO2. In summary, the physiological bases and future prospects for improving grape yield and WUE under drought are established. [source]


    Effect of transition metal ions (cobalt and nickel chlorides) on intestinal iron absorption

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2004
    G. O. Latunde-Dada
    Abstract Background, Haem biosynthesis may regulate intestinal iron absorption through changes in cellular levels of ,-aminolaevulinic acid (ALA), haem and perhaps other intermediates. CoCl2 and NiCl2 are activators of haem oxygenase, the rate-limiting enzyme in haem catabolism. Co2+ and Ni2+ may also regulate and increase iron absorption through a mechanism that simulates hypoxic conditions in the tissues. Design, We assayed intestinal iron absorption in mice dosed with CoCl2 or NiCl2. The effects of these metal ions on splenic and hepatic levels of ALA synthase and dehydratase as well as urinary levels of ALA and phosphobilinogen were also assayed. Results, While Co2+ enhanced iron absorption when administered to mice at doses of 65, 125 and 250 µmoles kg,1 body weight, Ni2+ was effective only at the highest dose. Ni2+ but not Co2+ at the highest dose reduced urinary ALA in the treated mice. Both metals ions increased splenic expression of haem oxygenase 1 and iron regulated protein 1, proteins involved, respectively, in haem degradation and iron efflux. Co2+ induced erythropoietin expression. Conclusions, The data suggest that while the effect of Ni2+ on iron absorption could be explained by effects on ALA, the effect of Co2+ may not be explained simply by changes in haem metabolism; therefore, effects mediated by alterations of specific haemoproteins by mechanisms that simulate tissue hypoxia could be important. [source]