Home About us Contact | |||
Oxydiphthalic Anhydride (oxydiphthalic + anhydride)
Selected AbstractsA positive-working photosensitive polyimide based on thermal cross-linking and acidolytic cleavageJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008Myung-Sup Jung Abstract A novel positive-working photosensitive polyimide (PSPI) based on a poly(hydroxyimide) (PHI), a crosslinking agent having vinyl ether groups, and a photoacid generator (PAG) was prepared. The PHI as a base resin of the three-component PSPI was synthesized from 4,4,-oxydiphthalic anhydride and 2,2,-bis(3-amino-4-hydroxyphenyl)hexafluoropropane through ring-opening polymerization and subsequent thermal cyclization. 2,2,-bis(4-(2-(vinyloxy)ethoxy)phenyl)propane (BPA-DEVE) was used as a vinylether compound and diphenyliodonium 5-hydroxynaphthalene-1-sulfonate was used as a PAG. The phenolic hydroxyl groups of the PHI and the vinyl ether groups of BPA-DEVE are thermally crosslinked with acetal structures during prebake step, and the crosslinked PHI becomes completely insoluble in an aqueous basic solution. Upon exposure to UV light (365 nm) and subsequent postexposure bake (PEB), a strong acid generated from the PAG cleaves the crosslinked structures, and the exposed area is effectively solubilized in the alkaline developer. The dissolution behavior of the PSPI containing each 11.5 wt % of BPA-DEVE and of the PAG was studied after UV exposure (365 nm) and PEB. It was found that the difference in dissolution rates between exposed and unexposed areas was enough to get high resolution. A fine positive pattern with a resolution of 5 ,m in a 3.7-,m-thick film was obtained from the three-component PSPI. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] New organosoluble polyimides with low dielectric constants derived from bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl] diphenylmethyleneMACROMOLECULAR SYMPOSIA, Issue 1 2003Der-Jang Liaw Abstract A new kink diamine with trifluoromethyl group on either side, bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl]diphenylmethane(BTFAPDM), was reacted with various aromatic dianhydrides to prepare polyimides via poly (amic acid) precursors followed by thermal or chemical imidization. Polyimides were prepared using 3,3,, 4,4,-biphenyltetracarboxylic dianhydride(1), 4,4,-oxydiphthalic anhydride(2), 3,3,,4,4,-benzophenonetetracarboxylic dianhydride (3), 4,4,-sulfonyldiphthalic anhydride(4), and 4,4,-hexafluoroisopropylidene-diphathalic anhydride(5). The fluoro-polyimides exhibited low dielectric constants between 2.46 and 2.98, light color, and excellent high solubility. They exhibited glass transition temperatures between 227 and 253°C, and possessed a coefficient of thermal expansion (CTE) of 60-88 ppm/°C. Polymers PI-2, PI-3, PI-4, PI-5 showed excellent solubility in the organic solvents: N -methyl-2-pyrrolidinone (NMP), N,N -dimethylacetamide (DMAc), N,N -dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridkie and tetrahydrofuran (THF). Inherent viscosity of the polyimides were found to range between 0.58 and 0.72 dLg-1. Thermogravimetric analysis of the polyimides revealed a high thermal stability decomposition temperature in excess of 500°C in nitrogen. Temperature at 10 % weight loss was found to be in the range 506-563°C and 498-557°C in nitrogen and air, respectively. The polyimide films had a tensile strength in the range 75-87 MPa; tensile modulus, 1.5-2.2 GPa; and elongation at break, 6-7%. [source] Synthesis and properties of the amino-functionalized multiple-walled carbon nanotubes/polyimide nanocompositesPOLYMER COMPOSITES, Issue 4 2009Yizhe Hu The 1,6-hexanediamine-functionalized multi-walled carbon nanotubes(a-MWNTs)/polyimide(PI) nanocomposite films were prepared through in-situ polymerization followed by mixture casting, evaporation, and thermal imidization. To increase the compatibility of carbon nanotubes with the matrix polyimide, a-MWNTs was used as the filler. According to the results, a-MWNTs were homogeneously dispersed in the nanocomposite films. With the incorporation of a-MWNTs, the mechanical properties of the resultant films were improved due to the strong chemical bonding and interfacial interaction between a-MWNTs and 4,4,-oxydiphthalic anhydride(ODPA)/4,4,-Oxydianiline(ODA) polyimide matrix. The thermal stability of the a-MWNTs/polyimide nanocomposite was also improved by the addition of a-MWNTs. The electrical tests showed a percolation threshold at about 0.85 vol% and the electrical properties were increased sharply. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Novel aromatic polyimide fiber with biphenyl side-groups: Dope synthesis and filament internal morphology controlPOLYMER ENGINEERING & SCIENCE, Issue 2 2006Xiangyang Liu A new organic-soluble aromatic polyimide with biphenyl side-groups has been synthesized from 4,4,-oxydiphthalic anhydride and 3,5-diamino-benzonic-4,-biphenyl ester (DABBE) via a one-step polymerization in m -cresol. A higher molecular weight polyimide has been obtained by the addition of chlorotrimethylsilane (TMSCl) in the solution of DABBE to form, in situ, silylated diamine. The optimum mole amount of TMSCl relative to the number of amino groups is 100%. This polyimide is soluble in m -cresol, allowing fibers to be spun from isotropic solution using a dry-jet wet spinning method. Based on a ternary phase diagram of m -cresol, ethanol, and water, controlling of the internal morphology of as-spun fibers has been achieved by varying the rate of polyimide coagulation through adjustment of nonsolvent/solvent miscibility in the coagulation bath. Scanning electron microscopic pictures show that filament internal morphologies ranged from porous-like to fully solid. The solid as-spun fibers can be drawn at high temperatures (>330°C) under tension to high drawn ratios (up to 6×), which produces a remarkable increase in tensile strength to about 1.0 GPa and an initial modulus higher than 60 GPa. POLYM. ENG. SCI. 46:123,128, 2006. © 2005 Society of Plastics Engineers [source] Studies of cure kinetics of polyisoimide by differential scanning calorimetry in the solid statePOLYMER INTERNATIONAL, Issue 5 2002Young Jun Kim Abstract Detailed kinetic studies of the thermal imidization of polyisoimide based upon 4,4,-oxydianiline and 4,4,-oxydiphthalic anhydride by differential scanning calorimetry are described. Both isothermal and dynamic methods have been used to obtain kinetic parameters and a phenomenological rate equation for estimating the degree of imidization as a function of time. The thermal imidization of polyisoimides in the solid state showed a maximum degree of imidization that can be achieved at a given isothermal temperature, probably due to the diffusion controlled characteristics of reactions near vitrification. That the reaction stopped near to the point of vitrification was considered when developing a phenomenological rate equation for thermal imidization of polyisoimide in the solid state. The thermal imidization is well described by modified first order kinetics with an activation energy of 170,181,kJ,mol,1 and a pre-exponential factor of 4.1,×,1013,s,1. © 2002 Society of Chemical Industry [source] Effects of cell structure and density on the properties of high performance polyimide foams,,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2-3 2005Martha K. Williams Abstract Activity at the NASA Langley Research Center (LaRC) has focused on developing low density polyimide foam and foam structures which are made using monomeric solutions or salt solutions formed from the reaction of a dianhydride and diamine dissolved in a mixture of foaming agents and alkyl alcohol at room temperature. Monomer blends may be used to make a variety of polyimide foams with varying properties. The first foaming process developed consisted of thermal cycling the polymer precursor residuum and allowing the inflation of the particles to interact to create the foam. This process has resulted in foam structures with higher percentages of open cell content. Another innovative foaming process has been developed that begins with partially inflated microspheres, "friable balloons", with incomplete polymer molecular weight gain, which when fully cured into a foam results in more closed cell structures. In a research study performed by NASA Kennedy Space Center (KSC) and LaRC, two closely related polyimide foams, TEEK-H series and TEEK-L series, (4,4,-oxydiphthalic anhydride/3,4,-oxydianiline and 3,3,,4,4,-benzophenonetetracarboxylic acid dianhydride/4,4,-oxydianiline) were investigated for density effects and closed versus open cell effects on the thermal, mechanical, and flammability properties. Thermal conductivity data under the full range of vacuum pressures indicate that these materials are effective insulators under cryogenic conditions. Contributing factors such as cell content, density, and surface area were studied to determine the effects on thermal conductivity. Cone calorimetry data indicated decreased peak heat release rates for the closed cell system, TEEK-H friable balloons, compared to the TEEK foams with higher open cell content. Mechanical properties including tensile strength and compressive strength indicated that the materials have good structural integrity. Foams with more open cell content resulted in greater tensile and compressive strengths than the closed cell foams. The maximum closed cell content achieved in the "friable balloon" system was 78% at a foam density of 0.048 gm/cm3. Published in 2005 by John Wiley & Sons, Ltd. [source] |