Home About us Contact | |||
Oxide Systems (oxide + system)
Selected AbstractsBinary Phase Diagram of the Manganese Oxide,Iron Oxide SystemJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2009Jarrod V. Crum The phase equilibrium of the MnOx,FeOy binary system was measured within a temperature range of 750°,1590°C in air to examine inconsistencies found in literature, i.e., discrepancies related to the boundary between the spinel and hausmannite+spinel phase fields. Several studies are available in the literature that describe this boundary however the results and methods by which they were studied vary namely in terms of the atmosphere (air versus reducing) used and heat treatment/analysis methods. In addition, samples in the discrepancy region of the diagram revert to the hausmannite phase spontaneously upon cooling due to a displacive transformation. In order to accurately measure the phase boundaries, the following measurement methods were used: isothermal heat treatments followed by rapid quenching (in air or water), dilatometry, differential thermal analysis with thermogravimetric analysis, as well as room temperature and hot-stage X-ray diffraction (XRD). Phase assemblage(s) in each specimen were determined by XRD. Data were compared with literature and a new, self consistent phase diagram was developed. The results are reported along with background information and a comparison with previously reported data. This study will support development of a model for thermodynamic equilibria in complex, multioxide silicate melts. [source] Mullitization from a Multicomponent Oxide System in the Temperature Range 1200°,1500°CJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000Hyunho Shin Mullitization from a multicomponent oxide system (alumina,kaolin,quartz,feldspar,talc) was analyzed as a function of firing temperature from 1200° to 1500°C based on quantitative XRD and SEM. In the present study, whisker forms of mullite grew in three characteristic stages. In the first stage (1255°,1295°C), mullitization (nucleation) took place from glass via alumina dissolution into glass under the condition of no apparent change in glass content. The reaction in this stage was rate-limited by alumina dissolution into glass. Extensive mullitization occurred in the 1295°,1335°C range (second stage) directly from glass. Unlike in the sol,gel-based binary system, alumina dissolution into glass was not shown to be the rate-controlling mechanism during this extensive mullitization stage. Finally (>1335°C, third stage), the reaction was saturated, accompanied by an apparent decrease in glass consumption rate. The impingement of mullite whiskers by other whiskers and crystals was speculated to cause mullite to grow in the transverse direction, yielding a diminished reaction rate in the final stage. Mullitization stages in this work were compared with those of the alumina,silica binary system shown in the literature. [source] Dilute Doping, Defects, and Ferromagnetism in Metal Oxide SystemsADVANCED MATERIALS, Issue 29 2010Satishchandra B. Ogale Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO2 and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions. [source] Discovery of New Green Phosphors and Minimization of Experimental Inconsistency Using a Multi-Objective Genetic Algorithm-Assisted Combinatorial MethodADVANCED FUNCTIONAL MATERIALS, Issue 11 2009Asish Kumar Sharma Abstract A multi-objective genetic algorithm-assisted combinatorial materials search (MOGACMS) strategy was employed to develop a new green phosphor for use in a cold cathode fluorescent lamp (CCFL) for a back light unit (BLU) in liquid crystal display (LCD) applications. MOGACMS is a method for the systematic control of experimental inconsistency, which is one of the most troublesome and difficult problems in high-throughput combinatorial experiments. Experimental inconsistency is a very serious problem faced by all scientists in the field of combinatorial materials science. For this study, experimental inconsistency and material property were selected as dual objective functions that were simultaneously optimized. Specifically, in an attempt to search for promising phosphors with high reproducibility, luminance was maximized and experimental inconsistency was minimized using the MOGACMS strategy. A divalent manganese-doped alkali alkaline germanium oxide system was screened using MOGACMS. As a result of MOGA reiteration, we identified a phosphor, Na2MgGeO4:Mn2+, with improved luminance and reliable reproducibility. [source] Mullitization from a Multicomponent Oxide System in the Temperature Range 1200°,1500°CJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2000Hyunho Shin Mullitization from a multicomponent oxide system (alumina,kaolin,quartz,feldspar,talc) was analyzed as a function of firing temperature from 1200° to 1500°C based on quantitative XRD and SEM. In the present study, whisker forms of mullite grew in three characteristic stages. In the first stage (1255°,1295°C), mullitization (nucleation) took place from glass via alumina dissolution into glass under the condition of no apparent change in glass content. The reaction in this stage was rate-limited by alumina dissolution into glass. Extensive mullitization occurred in the 1295°,1335°C range (second stage) directly from glass. Unlike in the sol,gel-based binary system, alumina dissolution into glass was not shown to be the rate-controlling mechanism during this extensive mullitization stage. Finally (>1335°C, third stage), the reaction was saturated, accompanied by an apparent decrease in glass consumption rate. The impingement of mullite whiskers by other whiskers and crystals was speculated to cause mullite to grow in the transverse direction, yielding a diminished reaction rate in the final stage. Mullitization stages in this work were compared with those of the alumina,silica binary system shown in the literature. [source] New oxidized sterols from Aspergillus awamori and the endo -boat conformation adopted by the cyclohexene oxide systemMAGNETIC RESONANCE IN CHEMISTRY, Issue 1 2010Hao Gao Abstract Two new oxidized sterols 1 and 2 were obtained from the active fraction of a mangrove fungus Aspergillus awamori isolated from the soils around the mangrove plant Acrostichum speciosum. Their structures were elucidated using spectroscopic methods as 22E -7,-methoxy-5,,6,-epoxyergosta-8(14),22-dien-3,-ol (1) and 22E -3,-hydroxy-5,,6,,8,,14,-diepoxyergosta-22-en-7-one (2). The NMR data and complete assignments for both DMSO- d6 and CDCl3 were given. Their cytotoxic activity against A549 cell line was evaluated. Furthermore, the detailed conformation analysis for ring B (cyclohexene oxide system) of sterol 1 was given on the basis of NOEs. The endo -boat conformation was considered as the preferred conformation for ring B rather than half-chair conformation. Copyright © 2009 John Wiley & Sons, Ltd. [source] The combustion behavior of polyacrylate ester/graphite oxide composites,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 4 2006Jianqi Wang Abstract There is an increasing interest in polymer layered silicate nanocomposites, due to the enhanced properties of these systems. An additional layered system is the graphite oxide system and this has been studied as polyacrylate ester nanocomposites. These have been characterized using X-ray diffraction and a variety of fire tests. There is a significant change in the oxygen index for nanocomposites which is absent for microcomposites, unlike the situation for the clay-based systems. X-ray photoelectron spectroscopy showed that the surface was covered with a graphite oxide-like material at high temperatures for the nanocomposites, suggesting that this nano-dimensional material operates as a barrier, exactly as proposed for polymer-clay systems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Temperature-Dependent Solid-State Reactions With and Without Kirkendall Effect in Al2O3/ZnO, Fe2O3/ZnO, and CoXOY/ZnO Oxide Thin Film Systems,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Andriy Zolotaryov Temperature-dependent solid-state reactions and the occurrence of the Kirkendall effect are studied in thin film oxide systems applying optical reflection microscopy, X-ray reflectivity, (scanning) transmission electron microscopy, grazing-incidence X-ray diffraction measurements, and SQUID magnetometry. The efficiency of the simultaneous application of different analytical methods for the precise selection and investigation of the most interesting samples is demonstrated first on the example of the Al2O3/ZnO system, for which the spinel formation after a solid-state reaction and the formation of Kirkendall voids were already reported. The demonstrated methodology is then applied to study Fe2O3/ZnO and CoXOY/ZnO film pairs. The investigations clearly demonstrate the temperature-driven formation of a ferromagnetic spinel by a solid state reaction involving the Kirkendall effect in the Fe2O3/ZnO system, already after an annealing at 600,°C for 1,h. We also report on the solid state reaction in the CoXOY/ZnO system after annealing at 700,°C for 1,h, however without the Kirkendall effect and without any evidence of ferromagnetism of the final state. [source] High-Density Carrier Accumulation in ZnO Field-Effect Transistors Gated by Electric Double Layers of Ionic LiquidsADVANCED FUNCTIONAL MATERIALS, Issue 7 2009Hongtao Yuan Abstract Very recently, electric-field-induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1,×,1014 cm,2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field-effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field-effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34,µF cm,2, deduced from Hall-effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge-accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8×1014 cm,2 at 220,K and maintaining a density of 5.5×1014 cm,2 at 1.8,K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems. [source] Thermochemical Modeling of Oxide GlassesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2002Theodore M. Besmann A modified associate species approach is used to model the liquid phase in oxide systems. The relatively simple technique treats oxide liquids as solutions of end-member and associate species. The model is extended to representing glasses by treating them as undercooled liquids. Equilibrium calculations using the model allow the determination of species activities, phase separation, precipitation of crystalline phases, and volatilization. In support of nuclear waste glass development, a model of the Na2O,Al2O3,B2O3,SiO2 system has been developed that accurately reproduces its phase equilibria. The technique has been applied to the CaO,SiO2 system, which is used to demonstrate how two immiscible liquids can be treated. [source] Preliminary Observations on Phase Relations in the "V2O3,FeO" and V2O3,TiO2 Systems from 1400°C to 1600°C in Reducing AtmospheresJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2000Theresa Coetsee Phase relations within the "V2O3,FeO" and V2O3,TiO2 oxide systems were determined using the quench technique. Experimental conditions were as follows: partial oxygen pressures of 3.02 × 10,10, 2.99 × 10,9, and 2.31 × 10,8 atm at 1400°, 1500°, and 1600°C, respectively. Analysis techniques that were used to determine the phase relations within the reacted samples included X-ray diffractometry, electron probe microanalysis (energy-dispersive spectroscopy and wavelength-dispersive spectroscopy), and optical microscopy. The solid-solution phases M2O3, M3O5, and higher Magneli phases (MnO2n,1, where M = V, Ti) were identified in the V2O3,TiO2 system. In the "V2O3,FeO" system, the solid-solution phases M2O3 and M3O4 (where M = V, Ti), as well as liquid, were identified. [source] Band alignment at metal,semiconductor and metal,oxide interfacesPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2010John Robertson Abstract The mechanisms of Schottky barrier formation are reviewed from the metal-induced gap state model to the universal defect model, and the chemical reaction model. The recent progress in understanding barrier heights and band offsets in Si , high dielectric constant oxide and metal high dielectric constant oxide systems is then discussed, and interesting they contain components of each model. The greater emphasis on understanding defect reactions has allowed us to separate the effects of intrinsic mechanisms, metal induced gap states (MIGS) and extrinsic mechanisms (defects). [source] Role of Humoral Mediators in, and Influence of a Liposomal Formulation on, Acute Amphotericin B NephrotoxicityBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2001Ramzi Sabra Both direct effects of amphotericin B on contractile vascular cells, and indirect effects, due to humoural mediators, have been proposed. This study examines the role of nitric oxide, endothelin and angiotensin II in the acute nephrotoxic effects of amphotericin B in rats, and compares the antifungal and nephrotoxic effects of liposomal amphotericin B and amphotericin B-deoxycholate. Anaesthetized rats were given infusions of amphotericin B-deoxycholate in the presence or absence of N-nitro-L-arginine, PD 145065, a non-specific endothelin receptor antagonist, and L-158809, an angiotensin II type I receptor antagonist, or increasing doses of liposomal amphotericin B. Amphotericin B-deoxycholate (0.03 mg/kg/min intravenously) caused a significant 44% reduction in glomerular filtration rate and 65% maximal fall in renal blood flow. N-Nitro-L-arginine-treated rats had a lower renal blood flow and glomerular filtration rate at baseline, but sustained similar reduction of 53% and 75% in these parameters, respectively. PD145065 and L-158809 did not modify these effects either. Increasing doses of liposomal amphotericin B (from 0.01 up to 0.50 mg/kg/min.) induced no change in either glomerular filtration rate or renal blood flow. In vitro susceptibility tests revealed similar potency for liposomal amphotericin B and amphotericin B-deoxycholate in their fungistatic effects and slightly higher potency for amphotericin B-deoxycholate in their fungicidal effect. These results suggest that endogenous endothelin, angiotensin II or nitric oxide systems are not involved in the nephrotoxic effects of amphotericin B. The liposomal amphotericin B results suggest that amphotericin B nephrotoxicity is due to a direct interaction of amphotericin B with renal cells that is prevented by its encapsulation in liposomes. [source] Mesoporous Pt,SiO2 and Pt,SiO2,Ta2O5 Catalysts Prepared Using Pt Colloids as TemplatesCHEMPHYSCHEM, Issue 5 2007Vasile I. Pârvulescu Prof. Dr. Abstract Sol-gel synthesis of silica and silica,tantalum oxide embedded platinum nanoparticles is carried out using Pt colloids as templates. These colloids are prepared by reduction with Na[AlEt3H] and stabilized with different ligands (ammonium halide derivatives, non-ionic surfactants with polyether chains, and 2-hydroxy-propionic acid). The aim of the present study is to prepare mesoporous silica embedded Pt colloids combining the "precursor concept" with the model of catalyst preparation using preformed spheres. Nanoparticles of Pt incorporated in high surface area mesoporous materials are formed after calcination. Further, it is observed that calcination of these catalysts causes partial aggregation and oxidation of the parent colloids, a process that is largely dependent on the nature of the stabilizing ligands. Several methods have been used for characterization of these materials: adsorption-desorption isotherms at 77 K, H2 chemisorption, X-ray diffraction(XRD), 29Si and 13C magic angle spinning (MAS) NMR, ammonia diffuse reflectance Fourier transform infrared spectroscopy (NH3 -DRIFT), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It is found that both metal oxide systems exhibit Brønsted acidity (weaker for silica and quite strong for silica,tantalum oxide). In addition, NH3 -DRIFT experiments demonstrate the oxidative properties of the surface. Part of the adsorbed NH4+ species is oxidized to N2O. Testing these catalysts in the reduction of NO and NO2 with isopentane under lean conditions indicate that the activity of these catalysts is indeed dependent on the size of the platinum particles, with those of size 8,10 nm demonstrating the best results. The support likely contributes to this effect, particularly after Ta incorporation into silica. [source] |