Oxide Species (oxide + species)

Distribution by Scientific Domains


Selected Abstracts


Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Cheng Yang
Abstract The electrical conductivity of a silver microflake-filled conductive composites is dramatically improved after a filler surface treatment. By a simple iodine solution treatment, nonstoichiometric silver/silver iodide nanoislands form on the silver filler surface. Evidence of the decrease of surface silver oxide species is provided by TOF-SIMS and the redox property of the nanoclusters is studied using cyclic voltammetry and TOF-SIMS depth profile analyses. The redox property of the nanoclusters on silver flakes helps enhance the electrical conductivity of the conductive composites. The electrical resistivity of the improved conductive composites is measured by four-point probe method; the reliability of the printed thin film resistors is evaluated by both the 85 °C/85% relative humidity moisture exposure and the ,40 , 125 °C thermal cycling exposure. The conductive composite printed radio frequency identification (RFID) antennas with 27.5 wt% of the modified silver flake content show comparable performance in the RFID tag read range versus copper foil antennas, and better than those commercial conductive adhesives that require much higher silver content (i.e., 80 wt%). This work suggests that a surface chemistry method can significantly reduce the percolation threshold of the loading level of the silver flakes and improve the electrical conductivity of an important printed electronic passive component. [source]


Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
Cheng Yang
Abstract The electrical conductivity of a silver microflake-filled conductive composites is dramatically improved after a filler surface treatment. By a simple iodine solution treatment, nonstoichiometric silver/silver iodide nanoislands form on the silver filler surface. Evidence of the decrease of surface silver oxide species is provided by TOF-SIMS and the redox property of the nanoclusters is studied using cyclic voltammetry and TOF-SIMS depth profile analyses. The redox property of the nanoclusters on silver flakes helps enhance the electrical conductivity of the conductive composites. The electrical resistivity of the improved conductive composites is measured by four-point probe method; the reliability of the printed thin film resistors is evaluated by both the 85 °C/85% relative humidity moisture exposure and the ,40 , 125 °C thermal cycling exposure. The conductive composite printed radio frequency identification (RFID) antennas with 27.5 wt% of the modified silver flake content show comparable performance in the RFID tag read range versus copper foil antennas, and better than those commercial conductive adhesives that require much higher silver content (i.e., 80 wt%). This work suggests that a surface chemistry method can significantly reduce the percolation threshold of the loading level of the silver flakes and improve the electrical conductivity of an important printed electronic passive component. [source]


The role of reactive oxygen species and nitric oxide in mast cell-dependent inflammatory processes

IMMUNOLOGICAL REVIEWS, Issue 1 2007
Emily J. Swindle
Summary:, Reactive oxygen species (ROS) and reactive nitrogen oxide species (RNOS), including nitric oxide, are produced in cells by a variety of enzymatic and non-enzymatic mechanisms. At high levels, both types of oxidants are used to kill ingested organisms within phagocytes. At low levels, RNOS may diffuse outside cells where they impact the vasculature and nervous system. Recent evidence suggests that low levels of ROS produced within cells are involved in cell signaling. Along with these physiological roles, many pathological conditions exist where detrimental high-level ROS and RNOS are produced. Many situations in which ROS/RNOS are associated also involve mast cell activation. In innate immunity, such mast cells are involved in the immune response toward pathogens. In acquired immunity, activation of mast cells by cross-linking of receptor-bound immunoglobulin E causes the release of mediators involved in the allergic inflammatory response. In this review, we describe the principle pathways for ROS and RNOS generation by cells and discuss the existence of such pathways in mast cells. In addition, we examine the evidence for a functional role for ROS and RNOS in mast cell secretory responses and discuss evidence for a direct relationship between ROS, RNOS, and mast cells in mast cell-dependent inflammatory conditions. [source]


Significant Influence of Zn on Activation of the C-H Bonds of Small Alkanes by Brønsted Acid Sites of Zeolite,

CHEMPHYSCHEM, Issue 17 2008
Alexander G. Stepanov Prof.
Abstract Herein, we analyze earlier obtained and new data about peculiarities of the H/D hydrogen exchange of small C1,n -C4 alkanes on Zn-modified high-silica zeolites ZSM-5 and BEA in comparison with the exchange for corresponding purely acidic forms of these zeolites. This allows us to identify an evident promoting effect of Zn on the activation of CH bonds of alkanes by zeolite Brønsted sites. The effect of Zn is demonstrated by observing the regioselectivity of the H/D exchange for propane and n- butane as well as by the increase in the rate and a decrease in the apparent activation energy of the exchange for all C1,n -C4 alkanes upon modification of zeolites with Zn. The influence of Zn on alkane activation has been rationalized by dissociative adsorption of alkanes on Zn oxide species inside zeolite pores, which precedes the interaction of alkane with Brønsted acid sites. [source]


Characterization and Activity of Cu-MnOx/,-Al2O3 Catalyst for Hydrogenation of Carbon Dioxide

CHINESE JOURNAL OF CHEMISTRY, Issue 5 2001
Gong-Xin Qi
Abstract The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature-programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO-MnOx/,-Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/,-Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO-MnKx/,-Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/,-Al2O3 catalyst there are two reducible copper oxide species; , and , peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO-MnOx/,-Al2O3 catalyst, four reduction peaks are observed, , peak is attributed to the dispersed copper oxide species; , peak is ascribed to the bulk CuO; , peak is attributed to the reduction of high dispersed CuO interacting with manganese; , peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu-Mn/,-Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between CuOMn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation. [source]