Oxidation Site (oxidation + site)

Distribution by Scientific Domains


Selected Abstracts


Pseudo-Octahedral Schiff Base Nickel(II) Complexes: Does Single Oxidation Always Lead to the Nickel(III) Valence Tautomer?

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2008
Olaf Rotthaus
Abstract With the aim of establishing correlations between the ligand structure and the oxidation site in nickel complexes from Schiff base ligands, five ligands and their nickel complexes have been synthesized. The prototypical asymmetric Schiff base ligand HL1 contains both phenol and pyridine pendant arms with a pivotal imine nitrogen atom. Ligands HL2,5 differ from HL1 by either their phenolate para substituent, the hybridization of the pivotal nitrogen atom, and/or the N-donor properties of the pyridine moiety. The five complexes [Ni(L1,5)2] are obtained by treating the corresponding ligands with 0.5 equiv. of Ni(OAc)2·4H2O in the presence of NEt3. X-ray crystal-structure diffraction studies as well as DFT calculations reveal that [Ni(L1,5)2] involves a high-spin nickel(II) ion within a pseudo-octahedral geometry. The two ligands are arranged in a meridional fashion when the pivotal nitrogen atom is an imine {as in [Ni(L1,2)2] and [Ni(L4,5)2]}, while the fac isomer is preferred in [Ni(L3)2] (amino pivotal nitrogen atom). [Ni(L1)2] is characterized by an oxidation potential at ,0.17 V vs. Fc+/Fc. The one-electron-oxidized species [Ni(L1)2]+ exhibits an EPR signal at g = 2.21 attributed to a phenoxyl radical that is antiferromagnetically coupled to a high-spin NiII ion. [Ni(L2)2] differs from [Ni(L1)2] by the phenolate para substituent (a tert -butyl instead of the methoxyl group) and exhibits an oxidation potential that is ca. 0.16 V higher. Compared to [Ni(L1)2]+ the cation [Ni(L2)2]+ exhibits a SOMO that is more localized on the metal atom. The EPR and electrochemical signatures of [Ni(L3)2]+ are similar to those of [Ni(L1)2]+, thus showing that an imino to amino substitution compensates for a methoxy to tert -butyl one. Replacement of the pyridine by a quinoline group in [Ni(L4,5)2] makes the complexes slightly harder to oxidize. The EPR signatures of the cations [Ni(L4,5)2]+ are roughly similar to those of the pyridine analogs [Ni(L1,2)2]+. The oxidation site is thus not significantly affected by changes in the N-donor properties of the terminal imino nitrogen atom.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Thermally induced intramolecular oxygen migration of N -oxides in atmospheric pressure chemical ionization mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2010
Xin Wang
N -Oxides are known to undergo three main thermal degradation reactions, namely deoxygenation, Cope elimination (for N -oxides containing a ,-hydrogen) and Meisenheimer rearrangement, in atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The ions corresponding to these thermal degradants observed in the ensuing APCI mass spectra have been used to identify N -oxides as well as to determine the N -oxidation site when the analyte contains multiple tertiary amine groups. In this paper, we report a thermally induced oxygen migration from one N -oxide amine to another tert -amine group present in the same molecule through a six-membered ring transition state during APCI-MS analysis. The observed intramolecular oxygen migration resulted in the formation of a new isomeric N -oxide, rendering the results of the APCI-MS analysis more difficult to interpret and potentially misleading. In addition, we observed novel degradation behavior that happened after the Meisenheimer rearrangement of the newly formed N -oxide: a homolytic cleavage of the NO bond instead of elimination of an aldehyde or a ketone that usually follows the rearrangement. Understanding of these unusual degradation pathways, which have not been reported previously, should facilitate structural elucidation of N -oxides using APCI-MS analysis. Copyright © 2010 John Wiley & Sons, Ltd. [source]


A further study of factors affecting pneumatic-impact ignition of polymers

FIRE AND MATERIALS, Issue 6 2006
Fu-Yu Hshieh
Abstract One likely cause of polymer ignition in high-pressure oxygen systems is the adiabatic-compression heating of polymers caused by pneumatic impact. The previous study showed that pneumatic-impact ignition of polymers could be initiated by a local heterogeneous reaction between the hot oxygen and the oxidation sites of the polymer. This study further investigates other factors that cause pneumatic-impact ignition of polymers in high-pressure oxygen. Because the oxygen concentration has a significant effect on pneumatic-impact ignition, threshold oxygen concentrations for pneumatic-impact ignition of six selected polymers were determined at 20.7 MPa (3000 psia), an expected service pressure in high-pressure oxygen systems. The six polymers investigated were: Teflon PTFE (polytetrafluoroethylene), Neoflon CTFE (polychlorotrifluoroethylene), PEEK (polyetheretherketone), Zytel 42 (nylon 6/6), Buna N (acrylonitrile butadiene rubber), and Viton A (copolymer of vinylidene fluoride and hexafluoropropylene). The results show that PEEK exhibited the highest threshold oxygen concentration (65%) and Zytel 42 exhibited the lowest threshold oxygen concentration (<21%). Copyright © 2006 John Wiley & Sons, Ltd. [source]


Detection of four oxidation sites in viral prolyl-4-hydroxylase by top-down mass spectrometry

PROTEIN SCIENCE, Issue 10 2003
Ying Ge
Abstract Oxidative inactivation is a common problem for enzymatic reactions that proceed via iron oxo intermediates. In an investigation of the inactivation of a viral prolyl-4-hydroxylase (26 kD), electrospray mass spectrometry (MS) directly shows the degree of oxidation under varying experimental conditions, but indicates the addition at most of three oxygen atoms per molecule. Thus, molecular ion masses (M + nO) of one sample indicate the oxygen atom adducts n = 0, 1, 2, 3, and 4 of 35, 41, 19, 5 ± 3, and <2%, respectively; "top-down" MS/MS of these ions show oxidation at the sites R28,V31, E95,F107, and K216 of 22%, 28%, and 34%, respectively, but with a possible (,4%) fourth site at V125,D150. However, for the doubly oxidized molecular ions (increasing the precursor oxygen content from 0.94 to 2), MS/MS showed an easily observable ,13% oxygen at the V125,D150 site. For the "bottom-up" approach, detection of the ,4% oxidation at the V125,D150 site by MS analysis of a proteolysis mixture would have been very difficult. The unmodified peptide containing this site would represent a few percent of the proteolysis mixture; the oxidized peptide not only would be just ,4% of this, but the uniqueness of its mass value (,1,2 kD) would be far less than the 11,933 Dalton value used here. Using different molecular ion precursors for top-down MS/MS also provides kinetic data from a single sample, that is, from molecular ions with 0.94 and 2 oxygens. Little oxidation occurs at V125,D150 until K216 is oxidized, suggesting that these are competitively catalyzed by the iron center; among several prolyl-4-hydroxylases the K216, H137, and D139 are conserved residues. [source]