Oxidase Enzyme (oxidase + enzyme)

Distribution by Scientific Domains


Selected Abstracts


Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes.

ELECTROANALYSIS, Issue 8 2006
Application to Natural Samples
Abstract Amperometric biosensors based on the corresponding oxidase enzyme with poly(neutral red) redox mediator have been developed for the determination of glucose and pyruvate. The enzymes have been immobilized on top of poly(neutral red) modified carbon film electrodes with glutaraldehyde as the cross-linking agent. The biosensors were characterized by cyclic voltammetry and by electrochemical impedance spectroscopy. The glucose biosensor exhibited a linear response in the range 90,,M to 1.8,mM with a detection limit of 22,,M and the pyruvate biosensor in the range 90 to 600,,M with a detection limit of 34,,M. The relative standard deviations were found to be 2.1% (n=3) and 2.8% (n=4) respectively. The interference effects of various compounds were also studied. The glucose content of several types of wine and the amount of pyruvate in onion and garlic were determined and the results were compared with those obtained by standard spectrophotometric methods. [source]


Polymorphism of microcrystalline urate oxidase from Aspergillus flavus

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2010
Ines Collings
Different polymorphs of rasburicase, a recombinant urate oxidase enzyme (Uox) from Aspergillus flavus, were obtained as a series of polycrystalline precipitates. Different crystallization protocols were followed in which the salt type, pH and polyethylene glycol 8000 (PEG 8000) concentration were varied. The related crystalline phases were characterized by means of high-resolution synchrotron X-ray powder diffraction. In all cases, Uox complexed with the inhibitor 8-azaxanthine (AZA) was not altered from its robust orthorhombic I222 phase by variation of any of the factors listed above. However, in the absence of AZA during crystallization ligand-free Uox was significantly affected by the type of salt, resulting in different crystal forms for the four salts tested: sodium chloride, potassium chloride, ammonium chloride and ammonium sulfate. Remarkable alterations of some of these phases were observed upon gradual increase of the exposure time of the sample to the synchrotron beam in addition to variation of the PEG 8000 concentration. When Uox was crystallized in Tris buffer or pure water in the absence of salt, a distinct polymorph of orthorhombic symmetry (P21212) was obtained that was associated with significantly altered lattice dimensions in comparison to a previously reported isosymmetrical structure. The latter form of Uox exhibits enhanced stability to variation of pH and PEG 8000 concentration accompanied by minor modifications of the unit-cell dimensions in the ranges under study. Accurate lattice parameters were extracted for all crystalline phases. This study reveals the rich phase diagram of Uox, a protein of high pharmaceutical importance, which is associated with an enhanced degree of polymorphism. The outcome of our analysis verifies previously reported results as well as demonstrating polymorphs that have altered unit-cell dimensions with respect to known structural models. [source]


Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2005
Rohit Srivastava
Abstract The nanoassembly and photo-crosslinking of diazo-resin (DAR) coatings on small alginate microspheres for stable enzyme entrapment is described. Multilayer nanofilms of DAR with poly(styrene sulfonate) (PSS) were used in an effort to stabilize the encapsulation of glucose oxidase enzyme for biosensor applications. The activity and physical encapsulation of the trapped enzyme were measured over 24 weeks to compare the effectiveness of nanofilm coatings and crosslinking for stabilization. Uncoated spheres exhibited rapid loss of activity, retaining only 20% of initial activity after one week, and a dramatic reduction in effective activity over 24 weeks, whereas the uncrosslinked and crosslinked {DAR/PSS}-coated spheres retained more than 50% of their initial activity after 4 weeks, which remained stable even after 24 weeks for the two and three bilayer films. Nanofilms comprising more polyelectrolyte layers maintained higher overall activity compared to films of the same composition but fewer layers, and crosslinking the films increased retention of activity over uncrosslinked films after 24 weeks. These findings demonstrate that enzyme immobilization and stabilization can be achieved by using simple modifications to the layer-by-layer self-assembly technique. © 2005 Wiley Periodicals, Inc. [source]


A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2006
Monika Budayova-Spano
Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-­azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1,Å resolution using the LADI instrument from a crystal (grown in D2O) with volume 1.8,mm3. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106,Å) and molecular weights (135,kDa for the homotetramer) so far successfully studied with neutrons. [source]