Oxidant Production (oxidant + production)

Distribution by Scientific Domains


Selected Abstracts


Free radical generation and oxidative stress with ageing and exercise: Differential effects in the myocardium and liver

ACTA PHYSIOLOGICA, Issue 4 2000
Bejma
Reactive oxygen species and other oxidants are implicated in the mechanisms of biological ageing and exercise-induced tissue damage. The present study examined the effects of ageing and an acute bout of exercise on intracellular oxidant generation, lipid peroxidation, protein oxidation and glutathione (GSH) status in the heart and liver of young adult (8 month, N=24) and old (24 month, N=24) male Fischer 344 rats. Young rats ran on treadmill at 25 m min,1, 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m min,1, 5% until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of intracellular oxidant production, was significantly higher in the homogenates of aged heart and liver compared with their young counterparts. In the isolated heart and liver mitochondria, ageing increased oxidant production by 29 and 32% (P < 0.05), respectively. Acute exercise increased oxidant production in the aged heart but not in the liver. When nicodinamide dinucleotide phosphate (reduced), adenosine diphosphate and Fe3+ were included in the assay, DCFH oxidation rate was 47 and 34% higher (P < 0.05) in the aged heart and liver homogenates, respectively, than the young ones. The age differences in the induced state reached 83 and 140% (P < 0.01) in isolated heart and liver mitochondria, respectively. Lipid peroxidation was increased in the aged liver and exercised aged heart, whereas protein carbonyl content was elevated only in the aged heart (P < 0.05). Although our data using DCFH method probably underestimated cellular oxidant production because of time delay and antioxidant competition, it is clear that oxidative stress was enhanced in both heart and liver with old age. Furthermore, aged myocardium showed greater susceptibility to oxidative stress after heavy exercise. [source]


Overproduction of reactive oxygen species in end-stage renal disease patients: A potential component of hemodialysis-associated inflammation

HEMODIALYSIS INTERNATIONAL, Issue 1 2005
Marion Morena
Abstract During the past decade, hemodialysis (HD)-induced inflammation has been linked to the development of long-term morbidity in end-stage renal disease (ESRD) patients on regular renal replacement therapy. Because interleukins and anaphylatoxins produced during HD sessions are potent activators for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an example of an enzyme that is responsible for overproduction of reactive oxygen species (ROS), this may constitute a link between leukocyte activation and cell or organ toxicity. Oxidative stress, which results from an imbalance between oxidant production and antioxidant defense mechanisms, has been documented in ESRD patients using lipid and/or protein oxidative markers. Characterization of HD-induced oxidative stress has included identification of potential activators for NADPH oxidase. Uremia per se could prime phagocyte oxidative burst. HD, far from improving the oxidative status, results in an enhancement of ROS owing to hemoincompatibility of the dialysis system, hemoreactivity of the membrane, and trace amounts of endotoxins in the dialysate. In addition, the HD process is associated with an impairment in antioxidant mechanisms. The resulting oxidative stress has been implicated in long-term complications including anemia, amyloidosis, accelerated atherosclerosis, and malnutrition. Prevention of oxidative stress in HD might focus on improving the hemocompatibility of the dialysis system, supplementation of deficient patients with antioxidants, and modulation of NADPH oxidase by pharmacologic approaches. [source]


The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the rat

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2009
Sevgin Ozlem Iseri
Abstract Background and Aim:, Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Methods:, Colitis was induced by intrarectal administration of 1 mL of 5% acetic acid to Sprague-Dawley rats (200,250 g; n = 7,8/group). Control rats received an equal volume of saline intrarectally. In treatment groups, the rats were treated with either sildenafil citrate (5 mg/kg/day; subcutaneously) or saline for 3 days. After decapitation, distal colon was weighed and scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and oxidant production. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-, and interleukin (IL)-1, levels. Results:, In the colitis group, the colonic tissue was characterized by lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and oxidant production. Serum TNF-, and IL-1, levels were higher in the colitis group compared to control values. Sildenafil reversed these inflammatory parameters nearly back to control values. Conclusions:, Sildenafil citrate administration to rats with acetic acid-induced colitis seems to be beneficial via prevention of lipid peroxidation, oxidant generation, cytokine production and neutrophil accumulation. [source]


Neutrophil dysfunction in a family with a SAPHO syndrome,like phenotype

ARTHRITIS & RHEUMATISM, Issue 10 2008
Polly J. Ferguson
SAPHO syndrome (synovitis, acne, pustulosis, hyperostosis, osteitis) is an inflammatory disorder of the bone, skin, and joints. We describe a family with multiple affected members who segregate a SAPHO syndrome,like phenotype, and we report the results of neutrophil studies and candidate gene analysis. We obtained written informed consent and a family history and reviewed medical records. We collected DNA and sequenced candidate genes, and we performed functional studies on neutrophils isolated from the proband and her mother. The pedigree segregated chronic osteomyelitis and cutaneous inflammation in a pattern that suggested an autosomal-dominant disorder. No coding sequence mutations were detected in PSTPIP1,PSTPIP2, LPIN2, SH3BP2, or NCF4. Analysis of neutrophil function in the proband, including nitroblue tetrazolium tests, myeloperoxidase assays, neutrophil chemotaxis, and neutrophil chemotaxis assays, revealed no identifiable abnormalities. However, an abnormality in the luminol, but not the isoluminol, respiratory burst assays following stimulation with phorbol myristate acetate (PMA) was detected in neutrophils isolated from the affected proband. Internal oxidant production was also reduced in the proband and her mother when neutrophils were treated with fMLP with or without platelet-activating factor, PMA alone, or tumor necrosis factor , alone. This family segregates a disorder characterized by chronic inflammation of the skin and bone. Functional differences in neutrophils exist between affected individuals and controls. The biologic significance of this defect remains unknown. Identification of the gene defect will help identify an immunologic pathway that, when dysregulated, causes inflammation of the skin and bone. [source]