Home About us Contact | |||
Oxidant Generation (oxidant + generation)
Selected AbstractsFree radical generation and oxidative stress with ageing and exercise: Differential effects in the myocardium and liverACTA PHYSIOLOGICA, Issue 4 2000Bejma Reactive oxygen species and other oxidants are implicated in the mechanisms of biological ageing and exercise-induced tissue damage. The present study examined the effects of ageing and an acute bout of exercise on intracellular oxidant generation, lipid peroxidation, protein oxidation and glutathione (GSH) status in the heart and liver of young adult (8 month, N=24) and old (24 month, N=24) male Fischer 344 rats. Young rats ran on treadmill at 25 m min,1, 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m min,1, 5% until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of intracellular oxidant production, was significantly higher in the homogenates of aged heart and liver compared with their young counterparts. In the isolated heart and liver mitochondria, ageing increased oxidant production by 29 and 32% (P < 0.05), respectively. Acute exercise increased oxidant production in the aged heart but not in the liver. When nicodinamide dinucleotide phosphate (reduced), adenosine diphosphate and Fe3+ were included in the assay, DCFH oxidation rate was 47 and 34% higher (P < 0.05) in the aged heart and liver homogenates, respectively, than the young ones. The age differences in the induced state reached 83 and 140% (P < 0.01) in isolated heart and liver mitochondria, respectively. Lipid peroxidation was increased in the aged liver and exercised aged heart, whereas protein carbonyl content was elevated only in the aged heart (P < 0.05). Although our data using DCFH method probably underestimated cellular oxidant production because of time delay and antioxidant competition, it is clear that oxidative stress was enhanced in both heart and liver with old age. Furthermore, aged myocardium showed greater susceptibility to oxidative stress after heavy exercise. [source] CYP2E1 overexpression alters hepatocyte death from menadione and fatty acids by activation of ERK1/2 signalingHEPATOLOGY, Issue 2 2004Jörn M. Schattenberg Chronic oxidative stress induced by overexpression of the cytochrome P450 isoform 2E1 (CYP2E1) has been implicated in hepatocyte injury and death. However, the mechanism by which CYP2E1 overexpression may promote cell death is unknown. Acute oxidative stress activates mitogen-activated protein kinases (MAPK), suggesting that chronic oxidant generation by CYP2E1 may regulate cellular responses through these signaling pathways. The effect of CYP2E1 overexpression on MAPK activation and their function in altering death responses of CYP2E1-overexpressing hepatocytes were investigated. Chronic CYP2E1 overexpression led to increased extracellular signal-regulated kinase 1/2 (ERK1/2) activation constitutively and in response to oxidant stress from the superoxide generator menadione. CYP2E1-overexpressing cells were resistant to menadione toxicity through an ERK1/2-dependent mechanism. Similar to menadione, the polyunsaturated fatty acid (PUFA) arachidonic acid (AA) induced an increased activation of ERK1/2 in hepatocytes that overexpressed CYP2E1. However, CYP2E1-overexpressing cells were sensitized to necrotic death from AA and the PUFA ,-linolenic acid, but not from saturated or monounsaturated fatty acids. Death from PUFA resulted from oxidative stress and was blocked by inhibition of ERK1/2, but not p38 MAPK or activator protein-1 signaling. CYP2E1 expression induced ERK1/2 activation through increased epidermal growth factor receptor (EGFR)/c-Raf signaling. Inhibition of EGFR signaling reversed CYP2E1-induced resistance to menadione and sensitization to AA toxicity. In conclusion, chronic CYP2E1 overexpression leads to sustained ERK1/2 activation mediated by EGFR/c-Raf signaling. This adaptive response in hepatocytes exposed to chronic oxidative stress confers differential effects on cellular survival, protecting against menadione-induced apoptosis, but sensitizing to necrotic death from PUFA. (HEPATOLOGY 2004;39;444,445.) [source] The effect of sildenafil, a phosphodiesterase-5 inhibitor, on acetic acid-induced colonic inflammation in the ratJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2009Sevgin Ozlem Iseri Abstract Background and Aim:, Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Methods:, Colitis was induced by intrarectal administration of 1 mL of 5% acetic acid to Sprague-Dawley rats (200,250 g; n = 7,8/group). Control rats received an equal volume of saline intrarectally. In treatment groups, the rats were treated with either sildenafil citrate (5 mg/kg/day; subcutaneously) or saline for 3 days. After decapitation, distal colon was weighed and scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and oxidant production. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-, and interleukin (IL)-1, levels. Results:, In the colitis group, the colonic tissue was characterized by lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and oxidant production. Serum TNF-, and IL-1, levels were higher in the colitis group compared to control values. Sildenafil reversed these inflammatory parameters nearly back to control values. Conclusions:, Sildenafil citrate administration to rats with acetic acid-induced colitis seems to be beneficial via prevention of lipid peroxidation, oxidant generation, cytokine production and neutrophil accumulation. [source] Ischemic preconditioning attenuates the oxidant-dependent mechanisms of reperfusion cell damage and death in rat liverLIVER TRANSPLANTATION, Issue 11 2002Barbara Cavalieri In an in vivo rat model of liver ischemia followed by reperfusion a consistent appearance of necrosis and activation of biochemical pathways of apoptosis was reproduced and monitored after 30 minutes reperfusion. Preconditioning by application of a short cycle of ischemia-reperfusion (10 minutes + 10 minutes) positively conditioned recovery of the organ at reperfusion, attenuating both necrotic and apoptotic events. Preconditioning at least halved cell oxidative damage occurring early at reperfusion, and as a major consequence, the increase of cytolysis and apoptosis occurring at reperfusion was about 50% less. The attenuation of both pathways of cell death by preconditioning appeared at least partly related to its modulate action on H2O2 and 4-hydroxy-2,3-trans-nonenal production. The overall data point to a marked diminished oxidant generation and oxidative reactions as one major possible mechanism through which ischemic preconditioning exerts protection against necrotic and apoptotic insult to the postischemic liver. [source] |