Oligodendrocyte Glycoprotein (oligodendrocyte + glycoprotein)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Oligodendrocyte Glycoprotein

  • myelin oligodendrocyte glycoprotein


  • Selected Abstracts


    Alternative isoforms of myelin/oligodendrocyte glycoprotein with variable cytoplasmic domains are expressed in human brain

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
    Chantal Allamargot
    Abstract The human myelin/oligodendrocyte glycoprotein (MOG) gene is encoded by 10 exons that exhibit a complex pattern of alternative splicing. This report demonstrates that several MOG-specific alternative splice variants are indeed expressed in human oligodendrocytes (OLs) and myelin during perinatal development and are retained through adulthood. While all forms possess the common extracellular Ig-like domain, these alternative MOG structures differ significantly in their respective cytoplasmic domains. Peptide-specific antibodies were generated to facilitate detection of these different MOG moieties. The fidelity of these antibodies is shown using N20 OLs expressing individual MOG variants. These antibodies also only co-localize with another well-characterized marker of OLs and myelin , PLP/DM20 proteins. Among the human tissue samples tested, very limited expression occurred by 36 weeks gestation for 2,3 MOG variants, and the remaining MOG isoforms were not evident until shortly after birth. This study represents the first evidence of alternative translation products from the MOG gene. To date, it is believed that alternative splicing of MOG is limited to primates. Recent completion of various genome projects has revealed that alternative splicing is much more prevalent than originally estimated, and species-specific alternative splicing is now being shown to be highly relevant to expanding proteomic diversity. [source]


    Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis

    NMR IN BIOMEDICINE, Issue 2 2007
    Erwin L. A. Blezer
    Abstract Experimental autoimmune encephalomyelitis (EAE) induced with recombinant human myelin/oligodendrocyte glycoprotein in the common marmoset is a useful preclinical model of multiple sclerosis in which white matter lesions can be well visualized with MRI. In this study we characterized lesion progression with quantitative in vivo MRI (4.7,T; T1 relaxation time,±,Gd-DTPA; T2 relaxation time; magnetization transfer ratio, MTR, imaging) and correlated end stage MRI presentation with quantitative ex vivo MRI (formaldehyde fixed brains; T1 and T2 relaxation times; MTR) and histology. The histopathological characterization included axonal density measurements and the numeric quantification of infiltrated macrophages expressing markers for early active [luxol fast blue (LFB) or migration inhibition factor-related protein-14 positive] or late active/inactive [periodic acid Schiff (PAS) positive] demyelinating lesion. MRI experiments were done every two weeks until the monkeys were sacrificed with severe EAE-related motor deficits. Compared with the normal appearing white matter, lesions showed an initial increase in T1 relaxation times, leakage of Gd-DTPA and decrease in MTR values. The progressive enlargement of lesions was associated with stabilized T1 values, while T2 initially increased and stabilized thereafter and MTR remained decreased. Gd-DTPA leakage was highly variable throughout the experiment. MRI characteristics of the cortex and (normal appearing) white matter did not change during the experiment. We observed that in vivo MTR values correlated positively with the number of early active (LFB+) and negatively with late active (PAS+) macrophages. Ex vivo MTR and relaxation times correlated positively with the number of PAS-positive macrophages. None of the investigated MRI parameters correlated with axonal density. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Memory B cells from a subset of treatment-naïve relapsing-remitting multiple sclerosis patients elicit CD4+ T-cell proliferation and IFN-, production in response to myelin basic protein and myelin oligodendrocyte glycoprotein

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2010
    Christopher T. Harp
    Abstract Recent evidence suggests that B- and T-cell interactions may be paramount in relapsing-remitting MS (RRMS) disease pathogenesis. We hypothesized that memory B-cell pools from RRMS patients may specifically harbor a subset of potent neuro-APC that support neuro-Ag reactive T-cell proliferation and cytokine secretion. To test this hypothesis, we compared CD80 and HLA-DR expression, IL-10 and lymphotoxin-, secretion, neuro-Ag binding capacity, and neuro-Ag presentation by memory B cells from RRMS patients to naïve B cells from RRMS patients and to memory and naïve B cells from healthy donors (HD). We identified memory B cells from some RRMS patients that elicited CD4+ T-cell proliferation and IFN-, secretion in response to myelin basic protein and myelin oligodendrocyte glycoprotein. Notwithstanding the fact that the phenotypic parameters that promote efficient Ag presentation were observed to be similar between RRMS and HD memory B cells, a corresponding capability to elicit CD4+ T-cell proliferation in response to myelin basic protein and myelin oligodendrocyte glycoprotein was not observed in HD memory B cells. Our results demonstrate for the first time that the memory B-cell pool in RRMS harbors neuro-Ag specific B cells that can activate T cells. [source]


    MAPK3 deficiency drives autoimmunity via DC arming

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010
    Ivo Bendix
    Abstract DC are professional APC that instruct T cells during the inflammatory course of EAE. We have previously shown that MAPK3 (Erk1) is important for the induction of T-cell anergy. Our goal was to determine the influence of MAPK3 on the capacity of DC to arm T-cell responses in autoimmunity. We report that DC from Mapk3,/, mice have a significantly higher membrane expression of CD86 and MHC-II and , when loaded with the myelin oligodendrocyte glycoprotein , show a superior capacity to prime naïve T cells towards an inflammatory phenotype than Mapk3+/+ DC. Nonetheless and as previously described, Mapk3,/, mice were only slightly but not significantly more susceptible to myelin oligodendrocyte glycoprotein-induced EAE than WT littermate mice. However, Mapk3+/+ mice engrafted with Mapk3,/, BM (KO,WT) developed a severe form of EAE, in direct contrast to WT,KO mice, which were even less sick than control WT,WT mice. An infiltration of DC and accumulation of Th17 cells was also observed in the CNS of KO,WT mice. Therefore, triggering of MAPK3 in the periphery might be a therapeutic option for the treatment of neuroinflammation since absence of this kinase in the immune system leads to severe EAE. [source]


    Novel CD8+ Treg suppress EAE by TGF-,- and IFN-,-dependent mechanisms

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 12 2009
    Mei-Ling Chen
    Abstract Although CD8+ Treg-mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency-associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP, counterparts. In addition to TGF-,, CD8+LAP+ cells produce IFN-,, and these cells suppress EAE that is dependent on both TGF-, and IFN-,. In an adoptive co-transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)-specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN-, production in vivo. Furthermore, in vivo neutralization of IFN-, and studies with IFN-,-deficient mice demonstrate an important role for IFN-, production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes. [source]


    Getting to the crux of the matter: IL-23 and Th17 cell accumulation in the CNS

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2009
    Benjamin M. Segal
    Abstract IL-23 plays a critical role in EAE induced by the active immunization of C57BL/6 mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein (MOG35,55). It was initially assumed that the pathogenic effects of IL-23 were directly related to the generation, expansion and/or stabilization of autoreactive CD4+ Th17 cells. However, a number of recent studies have uncovered discrepancies between the requirement for IL-23, as opposed to Th17 cells or their products (IL-17A, IL-17F and IL-22), in the development of EAE. In this issue of the European Journal of Immunology, it is demonstrated that impairment of IL-23 signaling does not impede the expansion of myelin-specific CD4+ T cells in peripheral lymphoid tissues but inhibits their accumulation in the CNS. This paper contributes to a growing body of data that implicates IL-23 in the acquisition of CNS homing properties by autoreactive effector cells. [source]


    Malondialdehyde modification of myelin oligodendrocyte glycoprotein leads to increased immunogenicity and encephalitogenicity

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2007
    Maja Wållberg
    Abstract Self proteins may become autoantigenic through structural modification. We studied malondialdehydation of recombinant rat (rr) myelin oligodendrocyte glycoprotein (MOG), an autoantigen in multiple sclerosis. Malondialdehyde (MDA) modification changed protein weight and charge, the location of these adducts being mapped by Fourier transform ion cyclotron resonance. Molecular modelling revealed significant differences in the MDA-rrMOG three-dimensional structure. DBA/1 mice immunised with MDA-rrMOG developed greater proliferative responses and more severe experimental autoimmune encephalomyelitis than mice immunised with unmodified rrMOG. MDA-rrMOG was taken up more effectively by antigen-presenting cells (APC), at least partially through scavenger receptors. Exposure to MDA-rrMOG led to increased expression of IL-23, IL-12 and IL-12R, indicating a role not only for increased antigen uptake but also for activation of APC. We thus provide biochemical, structural, immunological and clinical data that suggest that the post-translationally modified form of this myelin autoantigen is a more relevant form of the molecule. [source]


    Specificity, magnitude, and kinetics of MOG-specific CD8+ T,cell responses during experimental autoimmune encephalomyelitis

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2005
    Mandy
    Abstract Experimental autoimmune encephalomyelitis (EAE) has traditionally been thought to be almost exclusively mediated by CD4+ effector T,cells. Here, we provide evidence for the existence of mouse CD8+ T,cells that are specific for an epitope of the myelin oligodendrocyte glycoprotein (MOG). Using a panel of truncated MOG peptides, we have identified the minimal epitope recognized by these T,cells as MOG,37,46. This peptide, while possessing relatively low affinity for H-2Db, efficiently stimulates IFN-, production from MOG-specific CD8+ T,cell lines in vitro and induces EAE in vivo. To further characterize the magnitude and kinetics of expansion of the MOG-specific CD8+ T,cell population in vivo, we used MOG,37,50/H-2Db MHC tetramers to visualize MOG-specific CD8+ effectors in the peripheral lymphoid organs and central nervous system during the course of EAE induction and progression. Our results identify MOG-specific CD8+ T,cells in the central nervous system prior to and after the onset of disease, suggesting that CD8+ T,cells are a possible target for therapeutic intervention during EAE. [source]


    An MHC anchor-substituted analog of myelin oligodendrocyte glycoprotein,35,55 induces IFN-, and autoantibodies in the absence of experimental autoimmune encephalomyelitis and optic neuritis

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2004
    Mandy
    Abstract Previous strategies to ameliorate experimental autoimmune encephalitis (EAE) include the treatment of autoreactive T,cells with altered peptide ligands, which contain amino acid substitutions at TCR contact residues. We recently showed that a variant of myelin oligodendrocyte glycoprotein (MOG),35,55 possessing low affinity for MHC (45D) induced anergy in MOG,35,55-specific T,cells and reduced their encephalitogenicity upon adoptive transfer. Here we investigate the characteristics of the primary immune response to this MHC anchor-substituted peptide. Overall, we observed that immunization with 45D resulted in the production of IFN-, and anti-MOG,35,55 autoantibodies at levels similar to those of MOG,35,55-immunized mice with active EAE. However, no symptoms of clinical or histological EAE or overt histological optic neuritis were observed in 45D-immunized mice. Consistent with this finding, 45D-immunized mice did not exhibit CD4+ infiltrates into the CNS. Therefore, MOG,35,55-specific precursors stimulated with a weak ligand (45D) mediate some EAE-associated effector functions but are unable to fully initiate the inflammatory process in the central nervous system that leads to clinical manifestation of EAE. [source]


    Vaccination with myelin oligodendrocyte glycoprotein adsorbed to alum effectively protects DBA/1 mice from experimental autoimmune encephalomyelitis

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2003
    Maja Wållberg
    Abstract To prevent an organism from developing autoimmunity the body limits the number of autoreactive cells through thymic negative selection and regulates their activity through induction of suppressor T cells. Development of antigen-specific therapies provides an interesting opportunity to imitate the body's own, often effective, method of protection. Our study demonstrates that DBA/1 mice could be protected from experimental autoimmune encephalomyelitis induced through injection of recombinant myelin oligodendrocyte glycoprotein (rMOG) when they were previously immunized intraperitoneally with rMOG adsorbed to aluminium hydroxide. This protection was associated with a decreased IFN-, production by rMOG-specific cells, but not a decreased proliferative response. Protection was long lasting, indicating that MOG-alum vaccination might be developed as a prophylactic therapy in multiple sclerosis. [source]


    CD4 T,cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T,cells

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2003
    Kajsa Wing
    Abstract Regulatory T,cells expressing CD25 have been shown to protect rodents from organ-specific autoimmune diseases. Similar CD25+ cells with a memory phenotype exerting suppressive function after polyclonal or allogeneic stimulation are also present in adult human blood. We demonstrate that adult human CD25+ cells regulate the response to myelin oligodendrocyte glycoprotein (MOG), as depletion of CD25+ cells increases responses of PBMC and the addition of purified CD25+ cells suppresses MOG-specific proliferation and IFN-, production of CD4+CD25, T,cells. In contrast, cord blood CD25+ cells do not inhibit responses to self antigens, and only a small subpopulation of cord CD25+ cells expresses the typical phenotype of adult regulatory T,cells (CD45RA, and GITR+) enabling suppression of polyclonal responses. We conclude that activation of self-reactive T,cells in normal healthy individuals is prevented by the presence of self-antigen-specific CD25+ regulatory T,cells and that the majority of these cells mature after birth. [source]


    Genetic study of the myelin oligodendrocyte glycoprotein (MOG) gene in schizophrenia

    GENES, BRAIN AND BEHAVIOR, Issue 1 2005
    G. Zai
    Schizophrenia (SCZ) is a neuropsychiatric disorder that affects approximately 1% of the general population. The human leukocyte antigen (HLA) system has been implicated in several genetic studies of SCZ. The myelin oligodendrocyte glycoprotein (MOG) gene, which is located close to the HLA region, is considered a candidate for SCZ due to its association with white matter abnormalities and its importance in mediating the complement cascade. Four polymorphisms in the MOG gene (CA)n (TAAA)n, and two intronic polymorphisms, C1334T and C10991T, were investigated for the possibility of association with SCZ using 111 SCZ proband and their families. We examined the transmission of the alleles of each of these polymorphisms with the transmission disequilibrium test. We did not observe significant evidence for biased transmission of alleles at the (CA)n (,2 = 2.430, 6 df, P = 0.876) (TAAA)n (,2 = 3.550, 5 df, P = 0.616), C1334T (,2 = 0.040, 1 df, P = 0.841) and C10991T (,2 = 0.154, 1 df, P = 0.695) polymorphisms. Overall haplotype analysis using the TRANSMIT program was also not significant (,2 = 7.954, 9 df, P = 0.539). Furthermore, our results comparing mean age at onset in the genotype groups using the Kruskal,Wallis Test were not significant. Our case-control analyses (182 cases age-, sex- and ethnicity-matched with healthy controls) and combined z -score [(CA)n: z -score =,1.126, P = 0.130; (TAAA)n: z -score = ,0.233, P = 0.408; C1334T: z -score = 0.703, P = 0.241; C10991T: z -score = 0.551, P = 0.291] were also not significant. Although our data are negative, the intriguing hypothesis for MOG in SCZ may warrant further investigation of this gene. [source]


    Human fetal radial glia cells generate oligodendrocytes in vitro

    GLIA, Issue 5 2009
    Zhicheng Mo
    Abstract Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFR,), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4+ OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process. © 2008 Wiley-Liss, Inc. [source]


    Involvement of neuropsin in the pathogenesis of experimental autoimmune encephalomyelitis

    GLIA, Issue 2 2005
    Ryuji Terayama
    Abstract Inflammation, demyelination, and axonal damage of the central nervous system (CNS) are major pathological features of multiple sclerosis (MS). Proteolytic digestion of the blood-brain barrier and myelin protein by serine proteases is known to contribute to the development and progression of MS. Neuropsin, a serine protease, has a role in neuronal plasticity, and its expression has been shown to be upregulated in response to injury to the CNS. To determine the possible involvement of neuropsin in demyelinating diseases of the CNS, we examined its expression in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), a recognized animal model for MS. Neuropsin mRNA expression was induced in the spinal cord white matter of mice with EAE. Combined in situ hybridization and immunohistochemistry demonstrated that most of the cells expressing neuropsin mRNA showed immunoreactivity for CNPase, a cell-specific marker for oligodendrocytes. Mice lacking neuropsin (neuropsin,/,) exhibited an altered EAE progression characterized by delayed onset and progression of clinical symptoms as compared to wild-type mice. Neuropsin,/, mice also showed attenuated demyelination and delayed oligodendroglial death early during the course of EAE. These observations suggest that neuropsin is involved in the pathogenesis of EAE mediated by demyelination and oligodendroglial death. © 2005 Wiley-Liss, Inc. [source]


    Role of pathogenic T cells and autoantibodies in relapse and progression of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in LEW.1AV1 rats

    IMMUNOLOGY, Issue 1pt2 2009
    Yoh Matsumoto
    Summary Accumulating evidence suggests that T cells and autoantibodies reactive with myelin oligodendrocyte glycoprotein (MOG) play a critical role in the pathogenesis of multiple sclerosis (MS). In the present study, we have tried to elucidate the pathomechanisms of development and progression of the disease by analysing T cells and autoantibodies in MOG-induced rat experimental autoimmune encephalomyelitis (EAE), which exhibits various clinical subtypes mimicking MS. Analysis using overlapping peptides revealed that encephalitogenic epitopes resided in peptide 7 (P7, residue 91,108) and P8 (residue 103,125) of MOG. Immunization with MOGP7 and MOGP8 induced relapsing,remitting or secondary progressive EAE. T cells taken from MOG-immunized and MOGP7-immunized rats responded to MOG and MOGP7 and sera from MOG-immunized rats reacted to MOG and MOGP1. Significant epitope spreading was not observed at either T-cell or antibody levels. Interestingly, sera from MOGP7-immunized rats with clinical signs did not react to MOG and MOG peptides throughout the observation period, suggesting that disease development and relapse in MOGP7-induced EAE occur without autoantibodies. However, MOGP7 immunization with adoptive transfer of anti-MOG antibodies aggravated the clinical course of EAE only slightly. Analysis of antibodies against conformational epitope (cme) suggests that anti-MOGcme may play a role in the pathogenicity of anti-MOG antibodies. Collectively, these findings demonstrated that relapse of a certain type of MOG-induced EAE occurs without autoantibodies but that autoantibodies may play a role in disease progression. Relapses and the progression of MS-mimicking EAE are differently immunoregulated so immunotherapy should be designed appropriately on the basis of precise information. [source]


    Epitope mapping of the neuronal growth inhibitor Nogo-A for the Nogo receptor and the cognate monoclonal antibody IN-1 by means of the SPOT technique

    JOURNAL OF MOLECULAR RECOGNITION, Issue 3 2007
    Hilke Zander
    Abstract Nogo-A is a potent inhibitor of axonal outgrowth in the central nervous system of adult mammals, where it is expressed as a membrane protein on oligodendrocytes and in myelin. Here we describe an attempt to identify linear peptide epitopes in its sequence that are responsible for the interaction either with the Nogo receptor (NgR) or with the neutralizing monoclonal antibody IN-1. Analysis of an array of immobilized overlapping 15,mer peptides covering the entire amino acid sequence of human Nogo-A (1192 residues) revealed a single epitope with prominent binding activity both towards the recombinant NgR and the IN-1 Fab fragment. Further truncation and substitution analysis yielded the minimal epitope sequence 'IKxLRRL' (x,,,P), which occurs within the so-called Nogo66 region (residues 1054,1120) of Nogo-A. The bacterially produced Nogo66 fragment exhibited binding activity both for the recombinant NgR and for the IN-1 Fab fragment on the Western blot as well as in ELISA. Unexpectedly, the synthetic epitope peptide and the recombinant Nogo66 showed cross-reactivity with the 8-18C5 Fab fragment, which is directed against myelin oligodendrocyte glycoprotein (MOG) as a structurally unrelated target. On the other hand, the recombinant N-terminal domain of Nogo-A (residues 334,966) was shown to specifically interact on the Western blot and in an ELISA with the IN-1 Fab fragment but not with the recombinant NgR, which is in agreement with previous results. Hence, our data suggest that there is a distinct binding site for the Nogo receptor in the Nogo66 region of Nogo-A, whereas its interaction with NgR is less specific than anticipated before. Although there probably exists a non-linear epitope for the neutralizing antibody IN-1 in the N-terminal region of Nogo-A, which is likely to be accessible from outside the cell, a previously postulated second binding site for NgR in this region (called Nogo-A-24) remains elusive. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Characterization of CD8-positive macrophages infiltrating the central nervous system of rats with chronic autoimmune encephalomyelitis

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2009
    Keiko Hiraki
    Abstract CD8+ macrophages appear in the central nervous system (CNS) under various pathological conditions such as trauma and ischemia. Furthermore, macrophages expressing CD8 were found in CNS lesions of chronic, but not acute, experimental autoimmune encephalomyelitis (EAE). To further characterize cells with this phenotype, we examined CD8+ macrophages/monocytes in the CNS and peripheral organs during the course of acute and chronic EAE that had been induced by immunization of rats with myelin basic protein and myelin oligodendrocyte glycoprotein, respectively. Counting CD8+ macrophages in CNS lesions revealed that their numbers increased reaching about 60% of total infiltrating macrophages in chronic EAE, while CD8+ macrophages remained less than 5% throughout the course of acute EAE. Unexpectedly, however, higher abundance of CD8+ monocytes/macrophages in the peripheral blood was found in both acute and chronic EAE. Real-time polymerase chain reaction analysis revealed no significant difference in the levels of chemokines and chemokine receptors of blood CD8+ monocytes between acute and chronic EAE. mRNA expression of perforin, a cytotoxic substance, was up-regulated in CD8+ monocytes compared with that of CD8, monocytes in both acute and chronic EAE. These findings suggest that activated CD8+ macrophages may play a cytotoxic role in chronic EAE lesions and that cells other than CD8+ monocytes/macrophages determined the difference in CNS pathology between acute and chronic EAE. Analysis of CD8+ monocytes/macrophages may provide useful information to permit further dissect the pathomechanisms of multiple sclerosis and to develop effective immunotherapies against autoimmune diseases in the CNS. © 2008 Wiley-Liss, Inc. [source]


    Bone morphogenetic proteins 4, 6, and 7 are up-regulated in mouse spinal cord during experimental autoimmune encephalomyelitis

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2008
    Jahan Ara
    Abstract Although spontaneous remyelination occurs in multiple sclerosis (MS), the extent of myelin repair is often inadequate to restore normal function. Oligodendrocyte precursors remaining in nonremyelinating MS plaques may be restricted by an inhibitory signal. Bone morphogenetic proteins (BMPs) have been implicated as repressors of oligodendrocyte development and inducers of astrogliogenesis. We hypothesized that BMPs are up-regulated in MS lesions and play a role in demyelination and astrogliosis. We examined expression of BMPs in an animal model of MS, chronic experimental autoimmune encephalomyelitis (EAE) induced by the myelin oligodendrocyte glycoprotein (MOG) peptide in C57BL/6 mice. By 14 days postimmunization, compared to those of control mice, the lumbar spinal cords of MOG-peptide EAE mice demonstrated prominent astrogliosis, infiltration of inflammatory cells, and disrupted expression of myelin proteins. Quantitative RT-PCR showed that expression of BMP4, BMP6, and BMP7 mRNA increased 2- to 4-fold in the lumbar spinal cords of animals with symptomatic EAE versus in vehicle-treated and untreated controls on days 14, 21, and 42 postimmunization. BMP2 mRNA expression was not altered. BMP4 mRNA was much more abundant in the spinal cords of all animals than was mRNA encoding BMP2, BMP6, and BMP7. Immunoblot analysis confirmed the increased expression of BMP4 in the EAE animals. Immunohistochemistry revealed increased BMP4 immunoreactivity in areas of inflammation in MOG-peptide EAE animals. BMP4 labeling was mostly limited to macrophages but was sometimes associated with astrocytes and oligodendrocytes. These results indicate that members of the BMP family are differentially expressed in adult spinal cord and are up-regulated during EAE. © 2007 Wiley-Liss, Inc. [source]


    Quantitation of myelin oligodendrocyte glycoprotein and myelin basic protein in the thymus and central nervous system and its relationship to the clinicopathologic features of autoimmune encephalomyelitis

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006
    Hiroshi Sakuma
    Abstract There is controversy whether the amount of autoantigens expressed in the thymus regulates negative selection of autoreactive T cells and determine susceptibility or resistance to experimental autoimmune encephalomyelitis (EAE). In the present study, we have addressed this issue by quantifying neuroantigens in the thymus of two EAE-susceptible (LEW and LEW.1AV1) and one EAE-resistant (BN) rat strains. We further examined whether amounts of neuroantigens in various parts of the central nervous system (CNS) affect the clinical course and lesion distribution of acute and chronic EAE. Real-time PCR and histologic analyses showed that there was no significant difference in the amount and distribution of myelin oligodendrocyte glycoprotein and myelin basic protein in the thymus and CNS among the three strains and that both acute and chronic EAE lesions in the CNS were preferentially distributed in the area where neuroantigens were abundantly present. These findings suggest that susceptibility or resistance to EAE is not regulated by the amount of the neuroantigens expressed in the thymus. Furthermore, the lesion distribution, but not the clinical course, of EAE is related to the neuroantigen expression in the CNS. © 2006 Wiley-Liss, Inc. [source]


    Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2008
    M. Lindner
    To understand the mechanisms of remyelination and the reasons for regeneration failure is one of the major challenges in multiple sclerosis research. This requires a good knowledge and reliable analysis of experimental models. This work was undertaken to characterize the pattern of myelin protein expression during experimental remyelination. Acute demyelination of the corpus callosum was induced by feeding of 0.3% cuprizone for 6 weeks, followed by a 10-week remyelination period. We used a combination of Luxol fast blue (LFB) myelin staining, electron microscopy (EM) and immunohistochemistry for the myelin proteins 2,,3,-cyclic nucleotide 3, phosphodiesterase (CNPase), myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG). Early remyelination was detected by the re-expression of CNPase, MBP and PLP as early as 4 days. MOG, as a marker for late differentiation of oligodendrocytes, was not detectable until 2 weeks of remyelination. EM data correlated well with the LFB myelin staining and myelin protein expression, with 50% of the axons being rapidly remyelinated within 2 weeks. While particularly MBP but also PLP and CNPase are re-expressed very early before significant remyelination is observed by EM, the late marker MOG shows a lag behind the remyelination detected by EM. The presented data indicate that immunohistochemistry for various myelin proteins expressed early and late during myelin formation is a suitable and reliable method to follow remyelination in the cuprizone model. Furthermore, investigation of early remyelination confirms that the intrinsic repair programme is very fast and switched on within days. [source]


    Remyelination can be extensive in multiple sclerosis despite a long disease course

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2007
    R. Patani
    Experimental studies using models of multiple sclerosis (MS) indicate that rapid and extensive remyelination of inflammatory demyelinated lesions is not only possible, but is the normal situation. The presence of completely remyelinated MS lesions has been noted in numerous studies and routine limited sampling of post mortem MS material suggests that remyelination may be extensive in the early stages but eventually fails. However, visual macroscopic guided sampling tends to be biased towards chronic demyelinated lesions. Here we have extensively sampled cerebral tissue from two MS cases to investigate the true extent of remyelination. Sections were cut from 185 cerebral tissue blocks and stained with haematoxylin and eosin (H&E), luxol fast blue and cresyl fast violet (LFB/CFV) and anti-myelin oligodendrocyte glycoprotein, human leucocyte antigen-DR (HLA-DR) and 200 kDa neurofilament protein antibodies. Demyelinated areas were identified in 141 blocks, comprising both white matter (WMLs) and/or grey matter lesions. In total, 168 WMLs were identified, 22% of which were shadow plaques, 73% were partially remyelinated and only 5% were completely demyelinated. The average extent of lesion remyelination for all WMLs investigated was 47%. Increased density of HLA-DR+ macrophages and microglia at the lesion border correlated significantly with more extensive remyelination. Results from this study of two patients with long standing disease suggest that remyelination in MS may be more extensive than previously thought. [source]


    B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity,

    ANNALS OF NEUROLOGY, Issue 3 2010
    Martin S. Weber MD
    Objective Clinical studies indicate that anti-CD20 B-cell depletion may be an effective multiple sclerosis (MS) therapy. We investigated mechanisms of anti-CD20-mediated immune modulation using 2 paradigms of experimental autoimmune encephalomyelitis (EAE). Methods Murine EAE was induced by recombinant myelin oligodendrocyte glycoprotein (rMOG), a model in which B cells are considered to contribute pathogenically, or MOG peptide (p)35-55, which does not require B cells. Results In EAE induced by rMOG, B cells became activated and, when serving as antigen-presenting cells (APCs), promoted differentiation of proinflammatory MOG-specific Th1 and Th17 cells. B-cell depletion prevented or reversed established rMOG-induced EAE, which was associated with less central nervous system (CNS) inflammation, elimination of meningeal B cells, and reduction of MOG-specific Th1 and Th17 cells. In contrast, in MOG p35-55-induced EAE, B cells did not become activated or efficiently polarize proinflammatory MOG-specific T cells, similar to naive B cells. In this setting, anti-CD20 treatment exacerbated EAE, and did not impede development of Th1 or Th17 cells. Irrespective of the EAE model used, B-cell depletion reduced the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg), and increased the proinflammatory polarizing capacity of remaining myeloid APCs. Interpretation Our study highlights distinct roles for B cells in CNS autoimmunity. Clinical benefit from anti-CD20 treatment may relate to inhibition of proinflammatory B cell APC function. In certain clinical settings, however, elimination of unactivated B cells, which participate in regulation of T cells and other APC, may be undesirable. Differences in immune responses to MOG protein and peptide may be important considerations when choosing an EAE model for testing novel B cell-targeting agents for MS. ANN NEUROL 2010 [source]


    Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Fabienne Brilot PhD
    Objective Myelin oligodendrocyte glycoprotein (MOG) is a candidate target antigen in demyelinating diseases of the central nervous system (CNS). Although MOG is encephalitogenic in different animal models, the relevance of this antigen in human autoimmune diseases of the CNS is still controversial. Methods We investigated the occurrence and biological activity of antibodies to native MOG (nMOG) in 47 children during a first episode of CNS demyelination (acute disseminated encephalomyelitis [ADEM], n = 19 and clinical isolated syndrome [CIS], n = 28) by a cell-based bioassay. Results High serum immunoglobulin G (IgG) titers to nMOG were detected in 40% of children with CIS/ADEM but 0% of the control children affected by other neurological diseases, healthy children, or adults with inflammatory demyelinating diseases, respectively. By contrast, IgM antibodies to nMOG occurred in only 3 children affected by ADEM. Children with high anti-nMOG IgG titer were significantly younger than those with low IgG titer. Anti-nMOG IgG titers did not differ between the ADEM and CIS group, and did not predict conversion from CIS to MS during a mean 2-year follow-up. However, intrathecal IgG anti-MOG antibody synthesis was only seen in CIS children. IgG antibodies to nMOG not only bound to the extracellular domain of nMOG, but also induced natural killer cell-mediated killing of nMOG-expressing cells in vitro. Interpretation Overall, these findings suggest nMOG as a major target of the humoral immune response in a subgroup of children affected by inflammatory demyelinating diseases of the CNS. Children may provide valuable insight into the earliest immune mechanisms of CNS demyelination. Ann Neurol 2009;66:833,842 [source]


    Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates,

    ANNALS OF NEUROLOGY, Issue 3 2009
    Stefano Pluchino MD
    Objective Transplanted neural stem/precursor cells (NPCs) display peculiar therapeutic plasticity in vivo. Although the replacement of cells was first expected as the prime therapeutic mechanism of stem cells in regenerative medicine, it is now clear that transplanted NPCs simultaneously instruct several therapeutic mechanisms, among which replacement of cells might not necessarily prevail. A comprehensive understanding of the mechanism(s) by which NPCs exert their therapeutic plasticity is lacking. This study was designed as a preclinical approach to test the feasibility of human NPC transplantation in an outbreed nonhuman primate experimental autoimmune encephalomyelitis (EAE) model approximating the clinical and complex neuropathological situation of human multiple sclerosis (MS) more closely than EAE in the standard laboratory rodent. Methods We examined the safety and efficacy of the intravenous (IV) and intrathecal (IT) administration of human NPCs in common marmosets affected by human myelin oligodendrocyte glycoprotein 1-125,induced EAE. Treatment commenced upon the occurrence of detectable brain lesions on a 4.7T spectrometer. Results EAE marmosets injected IV or IT with NPCs accumulated lower disability and displayed increased survival, as compared with sham-treated controls. Transplanted NPCs persisted within the host central nervous system (CNS), but were also found in draining lymph nodes, for up to 3 months after transplantation and exhibited remarkable immune regulatory capacity in vitro. Interpretation Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS. Ann Neurol 2009;66:343,354 [source]


    Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid,

    ANNALS OF NEUROLOGY, Issue 6 2009
    Gregory P. Owens PhD
    Objective Intrathecal IgG synthesis, persistence of bands of oligoclonal IgG, and memory B-cell clonal expansion are well-characterized features of the humoral response in multiple sclerosis (MS). Nevertheless, the target antigen of this response remains enigmatic. Methods We produced 53 different human IgG1 monoclonal recombinant antibodies (rAbs) by coexpressing paired heavy- and light-chain variable region sequences of 51 plasma cell clones and 2 B-lymphocyte clones from MS cerebrospinal fluid in human tissue culture cells. Chimeric control rAbs were generated from anti-myelin hybridomas in which murine variable region sequences were fused to human constant region sequences. Purified rAbs were exhaustively assayed for reactivity against myelin basic protein, proteolipid protein, and myelin oligodendrocyte glycoprotein by immunostaining of transfected cells expressing individual myelin proteins, by protein immunoblotting, and by immunostaining of human brain tissue sections. Results Whereas humanized control rAbs derived from anti-myelin hybridomas and anti-myelin monoclonal antibodies readily detected myelin antigens in multiple immunoassays, none of the rAbs derived from MS cerebrospinal fluid displayed immunoreactivity to the three myelin antigens tested. Immunocytochemical analysis of tissue sections from MS and control brain demonstrated only weak staining with a few rAbs against nuclei or cytoplasmic granules in neurons, glia, and inflammatory cells. Interpretation The oligoclonal B-cell response in MS cerebrospinal fluid is not targeted to the well-characterized myelin antigens myelin basic protein, proteolipid protein, or myelin oligodendrocyte glycoprotein. Ann Neurol 2009;65:639,649 [source]


    Exacerbation of experimental autoimmune encephalomyelitis after withdrawal of phenytoin and carbamazepine

    ANNALS OF NEUROLOGY, Issue 1 2007
    Joel A. Black PhD
    Objective In vitro observations and studies in murine experimental autoimmune encephalomyelitis (EAE) have shown protective effects of sodium channel blockers on central nervous system axons and improved clinical status when treatment is continued throughout the period of observation. Several clinical studies of sodium channel blockers are under way in patients with multiple sclerosis. Here we asked whether a protective effect would persist after withdrawal of a sodium channel blocker. Methods We studied a mouse model of myelin oligodendrocyte glycoprotein,induced EAE treated with phenytoin or carbamazepine. Results Both phenytoin and carbamazepine significantly improved the clinical course of the disease. Withdrawal of phenytoin resulted in acute exacerbation, accompanied by a significantly increased inflammatory infiltrate within the central nervous system and the death of nearly 60% of EAE mice. There were no clinical worsening or deaths in control mice after withdrawal of phenytoin. Withdrawal of carbamazepine led to acute worsening of EAE symptoms, increased inflammatory infiltrate, and was associated with the death of 8% of mice. Interpretation These results, together with results showing effects of sodium channel blockers in immune cells, raise questions about the long-term effects of sodium channel blockers in neuroinflammatory disorders, and suggest that clinical studies of sodium channel blockers in these disorders should be planned carefully. Ann Neurol 2007 [source]


    The chemokine receptor antagonist, TAK-779, decreased experimental autoimmune encephalomyelitis by reducing inflammatory cell migration into the central nervous system, without affecting T cell function

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2009
    Jia Ni
    Background and purpose:, The C,C chemokine receptor CCR5, and the C,X,C chemokine receptor CXCR3 are involved in the regulation of T cell-mediated immune responses, and in the migration and activation of these cells. To determine whether blockade of these chemokine receptors modulated inflammatory responses in the central nervous sytem (CNS), we investigated the effect of a non-peptide chemokine receptor antagonist, TAK-779, in mice with experimental autoimmune encephalomyelitis (EAE). Experimental approach:, EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein (MOG) 35,55. TAK-779 was injected s.c. once a day after immunization. Disease incidence and severity (over 3 weeks) were monitored by histopathological evaluation and FACS assay of inflammatory cells infiltrating into the spinal cord, polymerase chain reaction quantification of mRNA expression, assay of T cell proliferation, by [3H]-thymidine incorporation and cytokine production by enzyme-linked immunosorbent assay. Key results:, Treatment with TAK-779 reduced incidence and severity of EAE. It strongly inhibited migration of CXCR3/CCR5 bearing CD4+, CD8+ and CD11b+ leukocytes to the CNS. TAK-779 did not reduce proliferation of anti-MOG T cells, the production of IFN-, by T cells or CXCR3 expression on T cells. In addition, TAK-779 did not affect production of IL-12 by antigen-presenting cells, CCR5 induction on T cells and the potential of MOG-specific T cells to transfer EAE. Conclusions and implications:, TAK-779 restricted the development of MOG-induced EAE. This effect involved reduced migration of inflammatory cells into the CNS without affecting responses of anti-MOG T cells or the ability of MOG-specific T cells to transfer EAE. [source]


    Anti-myelin antibodies in clinically isolated syndrome indicate the risk of multiple sclerosis in a Swiss cohort

    ACTA NEUROLOGICA SCANDINAVICA, Issue 4 2007
    I. Greeve
    Objectives,,, In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. Methods,,, Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. Results,,, After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. ,-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. Conclusions,,, In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment. [source]