Olfactory Epithelia (olfactory + epithelia)

Distribution by Scientific Domains


Selected Abstracts


Multiple sites of L-histidine decarboxylase expression in mouse suggest novel developmental functions for histamine

DEVELOPMENTAL DYNAMICS, Issue 1 2001
Kaj Karlstedt
Abstract Histamine mediates many types of physiologic signals in multicellular organisms. To clarify the developmental role of histamine, we have examined the developmental expression of L-histidine decarboxylase (HDC) mRNA and the production of histamine during mouse development. The predominant expression of HDC in mouse development was seen in mast cells. The HDC expression was evident from embryonal day 13 (Ed13) until birth, and the mast cells were seen in most peripheral tissues. Several novel sites with a prominent HDC mRNA expression were revealed. In the brain, the choroid plexus showed HDC expression at Ed14 and the raphe neurons at Ed15. Close to the parturition, at Ed19, the neurons in the tuberomammillary (TM) area and the ventricular neuroepithelia also displayed a clear HDC mRNA expression and histamine immunoreactivity (HA-ir). From Ed14 until birth, the olfactory and nasopharyngeal epithelia showed an intense HDC mRNA expression and HA-ir. In the olfactory epithelia, the olfactory receptor neurons (ORN) were shown to have very prominent histamine immunoreactivity. The bipolar nerve cells in the epithelium extended both to the epithelial surface and into the subepithelial layers to be collected into thick nerve bundles extending caudally toward the olfactory bulbs. Also, in the nasopharynx, an extensive subepithelial network of histamine-immunoreactive nerve fibers were seen. Furthermore, in the peripheral tissues, the degenerating mesonephros (Ed14) and the convoluted tubules in the developing kidneys (Ed15) showed HDC expression, as did the prostate gland (Ed15). In adult mouse brain, the HDC expression resembled the neuronal pattern observed in rat brain. The expression was restricted to the TM area in the ventral hypothalamus, with the main expression in the five TM subgroups called E1,E5. A distinct mouse HDC mRNA expression was also seen in the ependymal wall of the third ventricle, which has not been reported in the rat. The tissue- and cell-specific expression patterns of HDC and histamine presented in this work indicate that histamine could have cell guidance or regulatory roles in development. © 2001 Wiley-Liss, Inc. [source]


The proto-oncogene BCL6 promotes survival of olfactory sensory neurons

DEVELOPMENTAL NEUROBIOLOGY, Issue 6 2010
Joji M. Otaki
Abstract For the mammalian olfactory epithelium to continually detect odorant, neuronal survival, apoptosis, and regeneration must be coordinated. Here, we showed that the proto-oncogene BCL6, which encodes a transcriptional repressor required for lymphocyte terminal differentiation, contributes to the survival of olfactory sensory neurons (OSNs). In the olfactory epithelia of the BCL6 null mutant mice, many OSNs were positive for both OMP and GAP43. The epithelium was relatively thinner, showing many apoptotic signals. These characters were phenotypically similar to those of the wild-type mice treated with nasal lectin irrigation, which acutely induces apoptosis of OSNs. Odorant receptors were expressed normally in the epithelia of the mutant mice, and their overall expression profile based on DNA microarray analyses was roughly similar to that of the apoptosis-induced olfactory epithelia of the wild-type mice. Experimental increase of BCL6 together with green fluorescent protein in OSNs using adenovirus-mediated gene transfer made the epifluorescence last longer than the control fluorescence without exogenous BCL6 after the nasal lectin irrigation, indicating that BCL6 made the infected neurons survive longer. We conclude that BCL6 plays an active role in the survival of OSNs as an anti-apoptotic factor and confers immature OSNs enough time to fully differentiate into mature ones. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 424-435, 2010 [source]


Neuropeptide Y in the olfactory microvillar cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
Giorgia Montani
Abstract This paper examines a possible role of microvillar cells in coordinating cell death and regeneration of olfactory epithelial neurons. The olfactory neuroepithelium of mammals is a highly dynamic organ. Olfactory neurons periodically degenerate by apoptosis and as a consequence of chemical or physical damage. To compensate for this loss of cells, the olfactory epithelium maintains a lifelong ability to regenerate from a pool of resident multipotent stem cells. To assure functional continuity and histological integrity of the olfactory epithelium over a period of many decades, apoptosis and regeneration require to be precisely coordinated. Among the factors that have been implicated in mediating this regulation is the neuropeptide Y (NPY). Knockout mice that lack functional expression of this neurogenic peptide show defects in embryonic development of the olfactory epithelium and in its ability to regenerate in the adult. Here we show that, in postnatal olfactory epithelia, NPY is exclusively expressed by a specific population of microvillar cells. We previously characterized these cells as a novel type of putative chemosensory cells, which are provided with a phosphatidyl-inositol-mediated signal transduction cascade. Our findings allow for the first time to suggest that microvillar cells are involved in connecting apoptosis to neuronal regeneration by stimulus-induced release of NPY. [source]


Peripheral olfactory sensitivity in rodents after treatment with docetaxel,

THE LARYNGOSCOPE, Issue 4 2010
Frédéric Faure MD
Abstract Objectives/Hypothesis: Clinical studies have documented that cytotoxic chemotherapy is often associated with body weight loss and decreased enjoyment of food. Besides taste, olfaction plays a role in food intake. We assessed whether systemic chemotherapeutic cancer treatment compromises olfactory function in rats and mice treated with docetaxel (Taxotere; Sanofi-Aventis, Paris, France). Study Design: Randomized, controlled trials on mice and rats. Methods: Male mice received a single and male rats either a single, two, or three docetaxel administrations. Olfactory function was tested by means of electroolfactograms (EOGs) from the chemosensory epithelium of the nasal septum and the endoturbinates. We evaluated and compared the magnitude of EOG responses evoked by different odorants recorded at different time points after treatment. Results: In both animal species, docetaxel administration reduced body weight gain, thus evidencing the general toxic effect of the drug. In both animal species, the olfactory mucosa remained responsive to stimulation of odorants during the whole course of experiment, but treatment revealed regional differences of docetaxel susceptibility and induced marked transitory electrophysiological changes. In mice and rats a significant transitory decrease in EOG response magnitude occurred after a single administration. Unexpectedly, in rats we also observed an increase of the olfactory response following the second administration of the drug. Conclusions: Docetaxel exerts a neurotoxic effect on olfactory epithelia of rodents at doses similar to human doses, thus inducing transitory functional alterations. Although moderate, they are consistent with the hypothesis of a dysfunction of olfactory function. Further experiments are needed to elucidate the origin of the electrophysiological effects and their impact on the olfactory perception. Laryngoscope, 2010 [source]