Olefin Substrate (olefin + substrate)

Distribution by Scientific Domains


Selected Abstracts


Kinetics of (Porphyrin)manganese(III)-Catalyzed Olefin Epoxidation with a Soluble Iodosylbenzene Derivative

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2006
James P. Collman
Abstract We examined the kinetics of a well-behaved system for homogeneous porphyrin-catalyzed olefin epoxidation with a soluble iodosylbenzene derivative 1 as the terminal oxidant and Mn(TPFPP)Cl (2) as the catalyst. The epoxidation rates were measured by using the initial rate method, and the epoxidation products were determined by gas chromatography. The epoxidation rate was found to be first order with respect to the porphyrin catalyst and zero order on the terminal oxidant. In addition, we found the rate law to be sensitive to the nature and concentration of olefin substrates. Saturation kinetics were observed with all olefin substrates at high olefin concentrations, and the kinetic data are consistent with a Michaelis,Menten kinetic model. According to the observed saturation kinetic results, we propose that there is a complexation between the active oxidant and the substrate, and the rate-determining step is thought to be the breakdown of this putative substrate,oxidant complex that generates the epoxidation products and the resting state porphyrin catalyst. Competitive epoxidations further indicate a reversible complexation of the active oxidant and the olefin substrate. The activation parameters ,H, and ,S, for the oxygen-transfer process (k2) in the cis -cyclooctene epoxidation were determined to be 12.3,±,0.9 kcal,mol,1 and,15.6,±,3.2 cal,mol,1,K,1, respectively. In addition, the Hammett constant ,+ was measured for the epoxidation of para -substituted styrenes, and the value of ,0.27,±,0.04 is too low to be consistent with the involvement of a discrete carbocation in the transition state. We also prepared a (porphyrin)manganese catalyst immobilized on silica support, and found the epoxidation of cis -cyclooctene catalyzed by this heterogeneous catalyst proceeds at virtually the same turnover frequency as by the homogeneous porphyrin catalyst. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Tetraalkylammonium salt as photoinitiator of vinyl polymerization in organic and aqueous media: A mechanistic and laser flash photolysis study

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 7 2002
María L. Gómez
Abstract N -Dimethyl- N -[2-(N,N -dimethylamino)ethyl]- N -(1-methylnaphthyl)ammonium tetrafluoroborate (I) was synthesized with the aim of obtaining a versatile photoinitiator for vinyl polymerization in organic solvents and water. Salt I was able to trigger the polymerization of acrylamide, 2-hydroxyethylmethacrylate and styrene even at very low concentrations of the salt (,1.0 × 10,5 M). Using laser flash photolysis and fluorescence techniques and analyzing the photoproduct distribution, we were able to postulate a mechanism for the photodecomposition of the salt. With irradiation, I undergoes an intramolecular electron-transfer reaction to form a radical ion pair (RIP). The RIP intermediate decomposes into free radicals. The RIP and the free radicals are active species for initiating the polymerization. Depending on the concentration of the vinyl monomers studied, the initiation mechanism of the polymerization reaction changes. At large monomer concentrations, the RIP state is postulated to trigger the reaction by generating the anion radical of the olefin substrate. At a low monomer concentration, the free radicals produced by the decomposition of I are believed to start the chain reaction. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 901,913, 2002; DOI 10.1002/pola.10166 [source]


Kinetics of (Porphyrin)manganese(III)-Catalyzed Olefin Epoxidation with a Soluble Iodosylbenzene Derivative

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2006
James P. Collman
Abstract We examined the kinetics of a well-behaved system for homogeneous porphyrin-catalyzed olefin epoxidation with a soluble iodosylbenzene derivative 1 as the terminal oxidant and Mn(TPFPP)Cl (2) as the catalyst. The epoxidation rates were measured by using the initial rate method, and the epoxidation products were determined by gas chromatography. The epoxidation rate was found to be first order with respect to the porphyrin catalyst and zero order on the terminal oxidant. In addition, we found the rate law to be sensitive to the nature and concentration of olefin substrates. Saturation kinetics were observed with all olefin substrates at high olefin concentrations, and the kinetic data are consistent with a Michaelis,Menten kinetic model. According to the observed saturation kinetic results, we propose that there is a complexation between the active oxidant and the substrate, and the rate-determining step is thought to be the breakdown of this putative substrate,oxidant complex that generates the epoxidation products and the resting state porphyrin catalyst. Competitive epoxidations further indicate a reversible complexation of the active oxidant and the olefin substrate. The activation parameters ,H, and ,S, for the oxygen-transfer process (k2) in the cis -cyclooctene epoxidation were determined to be 12.3,±,0.9 kcal,mol,1 and,15.6,±,3.2 cal,mol,1,K,1, respectively. In addition, the Hammett constant ,+ was measured for the epoxidation of para -substituted styrenes, and the value of ,0.27,±,0.04 is too low to be consistent with the involvement of a discrete carbocation in the transition state. We also prepared a (porphyrin)manganese catalyst immobilized on silica support, and found the epoxidation of cis -cyclooctene catalyzed by this heterogeneous catalyst proceeds at virtually the same turnover frequency as by the homogeneous porphyrin catalyst. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


Asymmetric Epoxidation of Terminal Olefins with Binaphthyl Strapped Porphyrin Catalysts: (-( Stacking Interaction and Steric Effects on the Enantioselectivities

CHINESE JOURNAL OF CHEMISTRY, Issue 5 2009
Qizhi REN
Abstract Two binaphthyl strapped porphyrins with similar chiral auxiliaries 1b and 2b were used as efficient catalysts for asymmetric epoxidation of both styrene derivatives and non-aromatic olefin substrates. Theoretical calculation of styrene approach to both catalysts has been performed. The subtle difference of the chiral cavities between two porphyrins has been analyzed by 1H NMR. The ,-, stacking interaction between aromatic substrates and catalysts might be one factor for the dramatic different enantioselectivities. Besides, the steric effect of the binaphthyl handle of 1b and 2b also causes the high ee values for non-aromatic olefin epoxidations. [source]