O2 Molecule (o2 + molecule)

Distribution by Scientific Domains


Selected Abstracts


Myth and Reality in the Attitude toward Valence-Bond (VB) Theory: Are Its ,Failures' Real?

HELVETICA CHIMICA ACTA, Issue 4 2003
Sason Shaik
According to common wisdom propagated in textbooks and papers, valence-bond (VB) theory fails and makes predictions in contradiction with experiment. Four iconic ,failures' are: a) the wrong prediction of the ground state of the O2 molecule, b) the failure to predict the properties of cyclobutadiene (CBD) viz. those of benzene, c) the failure to predict the aromaticity/anti-aromaticity of molecular ions like C5H and C5H, C3H and C3H, C7H and C7H, etc; and d) the failure to predict that, e.g., CH4 has two different ionization potentials. This paper analyzes the origins of these ,failures' and shows that two of them (stated in a and d) are myths of unclear origins, while the other two originate in misuse of an oversimplified version of VB theory, i.e., simple resonance theory that merely enumerate resonance structures. It is demonstrated that, in each case, a properly used VB theory at a simple and portable level leads to correct predictions, as successful as those made by use of molecular-orbital (MO) theory. This notion of VB ,failure', which is traced back to the VB-MO rivalry, in the early days of quantum chemistry, should now be considered obsolete, unwarranted, and counterproductive. A modern chemist should know that there are two ways of describing electronic structure, which are not two contrasting theories, but rather two representations or two guises of the same reality. Their capabilities and insights into chemical problems are complementary, and the exclusion of any one of them undermines the intellectual heritage of chemistry. [source]


A hybrid functional scheme for defect levels and band alignments at semiconductor,oxide interfaces

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2010
Peter Broqvist
Abstract We introduce a theoretical scheme to study defect energy levels and band alignments at semiconductor,oxide interfaces. The scheme relies on hybrid functionals to overcome the band gap underestimation typically achieved with semilocal density functionals. For atomically localized defects, the more accurate description achieved with hybrid functionals does not lead to significant shifts of the charge transition levels, provided these levels are referred to a common reference potential. This result effectively decouples the shifts of the band edges with respect to the defect levels. We also show that relative shifts of conduction and valence band edges as determined by exact nonlocal exchange lead to band offsets in excellent agreement with experimental values for several semiconductor,oxide interfaces. The proposed scheme is illustrated through a series of applications, including the dangling bond defects in silicon and germanium, the charge state of the O2 molecule during silicon oxidation, and the oxygen vacancy in Si,SiO2,HfO2 stacks. [source]


EPR and photoluminescence diagnostics of singlet oxygen generation on porous silicon surface

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2009
E. A. Konstantinova
Abstract Electron paramagnetic resonance and photoluminescence spectroscopy are used to investigate photosensitized generation of singlet oxygen in the porous silicon layers. The singlet oxygen concentration in the samples was estimated at various oxygen pressures. The time of energy transfer from excitons confined in Si nanocrystals to adsorbed O2 molecules on silicon nanocrystal surface and photosensitization efficiency are found to depend on the porosity of the samples. The singlet oxygen generation efficiency increases strongly for porous silicon with high (>80%) porosity. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Formation of Superoxo Species by Interaction of O2 with Na Atoms Deposited on MgO Powders: A Combined Continuous-Wave EPR (CW-EPR), Hyperfine Sublevel Correlation (HYSCORE) and DFT Study

CHEMISTRY - A EUROPEAN JOURNAL, Issue 23 2010
Francesco Napoli Dr.
Abstract The formation of O2, radical anions by contact of O2 molecules with a Na pre-covered MgO surface is studied by a combined EPR and quantum chemical approach. Na atoms deposited on polycrystalline MgO samples are brought into contact with O2. The typical EPR signal of isolated Na atoms disappears when the reaction with O2 takes place and new paramagnetic species are observed, which are attributed to different surface-stabilised O2, radicals. Hyperfine sublevel correlation (HYSCORE) spectroscopy allows the superhyperfine interaction tensor of O2,Na+ species to be determined, demonstrating the direct coordination of the O2, adsorbate to surface Na+ cations. DFT calculations enable the structural details of the formed species to be determined. Matrix-isolated alkali superoxides are used as a standard to enable comparison of the formed species, revealing important and unexpected contributions of the MgO matrix in determining the electronic structure of the surface-stabilised Na+O2, complexes. [source]