Home About us Contact | |||
Nutrient-poor Soils (nutrient-poor + soil)
Selected AbstractsEvaluation of extractable elements in artificial substratum made from sewage sludge: Approach to remediation of degraded land in the ArcticLAND DEGRADATION AND DEVELOPMENT, Issue 2 2009T. T. Gorbacheva Abstract The Arctic (or subarctic) is characterized by a harsh climate and nutrient-poor soil; what makes it even harsher in Monchegorsk (67°51,N and 32°48,E) is that metal pollution originating from the Ni,Cu smelting industry has severely damaged the soil and ground vegetation, resulting in formation of an industrial desert (barren ground). A pilot-scale (4,ha) field test was carried out under such conditions to study how to apply municipal sewage sludge for rehabilitation of degraded land. After sewage sludge had been composted, an artificial substratum made from the compost was introduced to the remediation test field, and then willow, birch and grasses were planted on the substratum. The transformation of the artificial substratum was observed in the test field during 3 years. The portion of Cu in residual form was greater than that in other forms, it is hence considered that Cu has low bioavailability in the artificial substratum. Furthermore, the metal distributions statistically increased in fractions of humic acid (insoluble in water under acidic conditions), so the mobile amounts of Ni and Cu became small. The conclusion drawn from the field survey and analysis of extractable metals indicates that the lost vegetation is being restored even while pollution continues to be discharged from the smelter operation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic RegionFUNCTIONAL ECOLOGY, Issue 3 2010Megan J. Yates Summary 1.,Small leaves of species endemic to Mediterranean-type climate areas have been associated with both low rainfall and nutrient availability, but the physiological reasons for this association remain unknown. 2.,We postulated that small leaves have thin boundary layers that facilitate transpiration in winter and sensible heat loss in summer. High transpiration rates when water is available may facilitate nutrient acquisition in winter, whereas efficient sensible heat loss reduces the requirement for transpirational leaf cooling in summer. 3.,The consequences of varying leaf sizes for water and heat loss in Cape Proteaceae were examined at two scales. At the leaf level, gas exchange and thermoregulatory capacities of 15 Proteaceae species with varying leaf size were assessed under controlled conditions using phylogenetically independent contrasts. At an environmental level, leaf attributes of Proteaceae occurring in the winter-rainfall area of the Cape Floristic Region were correlated with climatic environments derived from distribution data for each species. 4.,Leaf temperature was positively correlated with leaf size when wind speed was negligible. However, transpiration decreased significantly with increasing leaf size when measured on individual leaves, detached branches and when expressed on a per stoma basis. 5.,From multiple stepwise regression analysis of climatic variables obtained from distribution data, leaf size was negatively correlated with A-Pan evaporation, mean annual temperatures and water stress in January. We conclude that leaf size is conservative for survival over relatively rare periods of hot dry conditions with low wind speeds. 6.,Narrow leaves enable plants to shed heat through sensible heat loss during summer droughts, without the need for transpirational cooling. Additionally, small leaf dimensions confer a capacity for high transpiration when evaporative demand is low and water is abundant (i.e. winter). This may be a particularly important strategy for driving nutrient mass-flow to the roots of plants that take up most of their nutrients in the wet winter/spring months from nutrient-poor soils. [source] Soilscape and land-use evolution related to drift sand movements since the bronze age in Eastern Jutland, DenmarkGEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 2 2007Jari Hinsch Mikkelsen Quarry faces several kilometers long in the Glesborg area in Denmark show that Bronze Age farmers used a sustainable land-use system. Despite nutrient-poor soils, the Glesborg area was under a rotation system in which cropland alternated with grassland. Soil fertility was improved by the addition of household waste and probably also by locally obtained inorganic fertilizer. The soil surface was very stable, and local drift sand movement was limited. Toward the end of the Bronze Age, the landscape changed dramatically with the arrival of overwhelming amounts of drift sand, and farmsteads were abandoned. Subsequent land use on these poor fine sandy soils was no longer capable of maintaining a stable soil surface, and frequent erosion/sedimentation events of more local importance took place. The post-Bronze Age landscape may have been mainly a shifting mosaic of heathland with some temporary arable fields and deflation/accumulation areas. This landscape persisted up to about 200 years ago, when afforestation programs started. © 2007 Wiley Periodicals, Inc. [source] Floral free fall in the Swiss lowlands: environmental determinants of local plant extinction in a peri-urban landscapeJOURNAL OF ECOLOGY, Issue 4 2007IVANA STEHLIK Summary 1Local floras are being depleted by a host of human activities, including habitat destruction and fragmentation, eutrophication, and the intensification of agriculture. Species with particular ecological demands or life-history attributes are more prone to extinction than species with a broader niche. 2We used an old herbarium from the municipality of Küsnacht (Swiss lowlands) as a historical record for comparison with contemporary plant diversity. This comparison revealed that 17% to 28% of all vascular plants that occurred between 1839 and 1915 were extinct by 2003. 3Species of different habitats and life-forms had significantly different rates of extinction: wetlands, disturbed sites and meadows lost most species, whereas forests and rocky habitats were least affected; aquatics and annuals were most prone to extinction, geophytes and hemicryptophytes were intermediate, and phanerophytes and chamaephytes were least affected. 4Species adapted to nutrient-poor soils suffered highest extinction in all habitats, indicating that eutrophication poses an urgent threat to species diversity. Light and soil moisture requirements also had significant effects on extinction, but the direction of the effect varied by habitat. 5When species were grouped into IUCN categories of the red list of Switzerland, the rank order of the observed extinction matched the red list assignment. 6Because many of the remaining species had high estimated extinction probabilities and because extinction is often delayed (extinction debt), a substantial part of the remaining flora of Küsnacht is likely to go extinct in the near future. This will increase the dominance of the common species that already comprise 81% of the local flora. 7The rates and patterns of extinction in Küsnacht are probably representative of surrounding Swiss lowlands and peri-urban landscapes in most developed countries. Studies such as ours can serve as a call for action and form a basis for future monitoring of biodiversity. [source] Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life spanJOURNAL OF ECOLOGY, Issue 3 2002Ian J. Wright Summary 1,Leaf life span (LL) and leaf mass per area (LMA) are fundamental traits in the carbon economy of plants, representing the investment required per unit leaf area (LMA) and the duration of the resulting benefit (LL). Species on dry and infertile soils converge towards higher LMA. It has been generally assumed that this allows species from low-resource habitats to achieve longer average leaf life spans, as LMA and LL are often correlated. 2,Leaf life span and LMA were measured for 75 perennial species from eastern Australia. Species were sampled from nutrient-rich and nutrient-poor sites within high and low rainfall regions. LL and LMA were positively correlated across species within each site. In addition, evolutionary divergences in LL and LMA were correlated within each site, indicating that cross-species relationships were not simply driven by differences between higher taxonomic groups. 3,Within a rainfall zone, LL,LMA combinations shifted as expected along common axes of variation such that species on poorer soils had higher LMA and longer LL, but significantly so only at high rainfall. 4,Low rainfall species were expected to have shorter LL at a given LMA or, equally, require higher LMA to achieve a given LL, i.e. shift to a parallel axis of variation, and this was observed on both nutrient-rich and nutrient-poor soils. On average, 30% higher LMA was seemingly required at dry sites to achieve a given LL. Thus, convergence towards higher LMA has different consequences for leaf life span in dry and nutrient-poor habitats. 5,The broad shifts in LL,LMA combinations between site types were also seen when comparing closely related species-pairs (phylogenetically independent contrasts) occurring on nutrient-rich and nutrient-poor soils (within each rainfall zone), and at high- and low-rainfall sites (at each soil nutrient level). [source] Importance of soils, topography and geographic distance in structuring central Amazonian tree communitiesJOURNAL OF VEGETATION SCIENCE, Issue 6 2008Stephanie A. Bohlman Abstract Question: What is the relative contribution of geographic distance, soil and topographic variables in determining the community floristic patterns and individual tree species abundances in the nutrient-poor soils of central Amazonia? Location: Central Amazonia near Manaus, Brazil. Methods: Our analysis was based on data for 1105 tree species (, 10 cm dbh) within 40 1-ha plots over a ca. 1000-km2 area. Slope and 26 soil-surface parameters were measured for each plot. A main soil-fertility gradient (encompassing soil texture, cation content, nitrogen and carbon) and five other uncorrelated soil and topographic variables were used as potential predictors of plant-community composition. Mantel tests and multiple regressions on distance matrices were used to detect relationships at the community level, and ordinary least square (OLS) and conditional autoregressive (CAR) models were used to detect relationships for individual species abundances. Results: Floristic similarity declined rapidly with distance over small spatial scales (0,5 km), but remained constant (ca. 44%) over distances of 5 to 30 km, which indicates lower beta diversity than in western Amazonian forests. Distance explained 1/3 to 1/2 more variance in floristics measures than environmental variables. Community composition was most strongly related to the main soil-fertility gradient and C:N ratio. The main fertility gradient and pH had the greatest impact of species abundances. About 30% of individual tree species were significantly related to one or more soil/topographic parameters. Conclusions: Geographic distance and the main fertility gradient are the best predictors of community floristic composition, but other soil variables, particularly C:N ratio, pH, and slope, have strong relationships with a significant portion of the tree community. [source] Nutrient requirements of ephemeral plant species from wet, mesotrophic soilsJOURNAL OF VEGETATION SCIENCE, Issue 3 2001Emiel; Brouwer van der Meijden (1996) Abstract. Nanocyperion plant communities occur on wet, more or less nutrient-poor and sparsely vegetated soils in temperate climates and are characterized by tiny, very shortlived plant species. Most of these have become locally extinct. It is generally assumed that drainage and eutrophication were the most important reasons for this decrease. However, chemical analysis of soil pore water from plots on growth sites of these ephemerals showed that phosphorus availability was relatively high. In a greenhouse experiment, the growth of ephemeral species was strongly limited by the amount of available phosphorus, whereas there was little or no limitation to the growth of other plant species from this habitat. At low phosphorus concentrations, the ephemeral species reached their reproductive phase within the same period, but showed a strong reduction in the amount of flowers that were produced. We concluded that ephemeral species in particular require a minimum amount of phosphorus for reproduction. Other species on nutrient-poor, wet soils have a longer life span and can postpone flowering in nutrient-poor soils. In contrast to other short-lived plant species from the same habitat, the growth of ephemeral species was barely stimulated by enhanced nitrogen availability. Apparently, the ephemerals are adapted to low nitrogen concentrations. The occurrence on nitrogen-poor and relatively phosphorus-rich soils suggests that this community may be very sensitive to nitrogen deposition. Reduced phosphorus availability below the minimum requirements of ephemerals, for example after acidification or the exclusion of human activities, has possibly contributed to the decrease of ephemeral plant species. [source] Foliar demand and resource economy of nutrients in dry tropical forest speciesJOURNAL OF VEGETATION SCIENCE, Issue 1 2001C.B. Lal Important phenological activities in seasonally dry tropical forest species occur within the hot-dry period when soil water is limiting, while the subsequent wet period is utilized for carbon accumulation. Leaf emergence and leaf area expansion in most of these tree species precedes the rainy season when the weather is very dry and hot and the soil cannot support nutrient uptake by the plants. The nutrient requirement for leaf expansion during the dry summer period, however, is substantial in these species. We tested the hypothesis that the nutrients withdrawn from the senescing leaves support the emergence and expansion of leaves in dry tropical woody species to a significant extent. We examined the leaf traits (with parameters such as leaf life span, leaf nutrient content and retranslocation of nutrients during senescence) in eight selected tree species in northern India. The concentrations of N, P and K declined in the senescing foliage while those of Na and Ca increased. Time series observations on foliar nutrients indicated a substantial amount of nutrient resorption before senescence and a ,tight nutrient budgeting'. The resorbed N-mass could potentially support 50 to 100% and 46 to 80% of the leaf growth in terms of area and weight, respectively, across the eight species studied. Corresponding values for P were 29 to 100% and 20 to 91%, for K 29 to 100% and 20 to 57%, for Na 3 to 100% and 1 to 54%, and for Ca 0 to 32% and 0 to 30%. The species differed significantly with respect to their efficiency in nutrient resorption. Such interspecific differences in leaf nutrient economy enhance the conservative utilization of soil nutrients by the dry forest community. This reflects an adaptational strategy of the species growing on seasonally dry, nutrient-poor soils as they tend to depend more or less on efficient internal cycling and, thus, utilize the retranslocated nutrients for the production of new foliage biomass in summer when the availability of soil moisture and nutrients is severely limited. [source] Short-Term and Long-Term Effects of Soil Ripping, Seeding, and Fertilization on the Restoration of a Tropical RangelandRESTORATION ECOLOGY, Issue 2010David Kinyua Rangeland degradation is a serious problem in semiarid Africa. Extensive areas of bare, compacted, nutrient-poor soils limit the productivity and biodiversity of many areas. We conducted a set of restoration experiments in which all eight combinations of soil tilling, fertilization, and seeding with native perennial grasses were carried out in replicated plots. After 6 months, little aboveground biomass was produced in plots without tilling, regardless of seeding or fertilization. Tilling alone tripled plant biomass, mostly of herbaceous forbs and annual grasses. Perennial grasses were essentially limited to plots that were both tilled and seeded. The addition of fertilizer had no significant additional effects. After 7 years, vegetation had declined, but there were still large differences among treatments. After 10 years, one tilled (and seeded) plot had reverted to bare ground, but the other tilled plots still had substantial vegetation. Only one seeded grass (Cenchrus ciliaris) was still a contributor to total cover after 10 years. We suggest that restoration efforts on these soils be directed first to breaking up the surface crust, and second to the addition of desirable seed. A simple ripping trial inspired by this experiment showed considerable promise as a low-cost restoration technique. [source] Performance Trade-offs Driven by Morphological Plasticity Contribute to Habitat Specialization of Bornean Tree SpeciesBIOTROPICA, Issue 4 2009Daisy H. Dent ABSTRACT Growth-survival trade-offs play an important role in niche differentiation of tropical tree species in relation to light-gradient partitioning. However, the mechanisms that determine differential species performance in response to light and soil resource availability are poorly understood. To examine responses to light and soil nutrient availability, we grew seedlings of five tropical tree species for 12 mo at < 2 and 18 percent full sunlight and in two soil types representing natural contrasts in nutrient availability within a lowland dipterocarp forest in North Borneo. We chose two specialists of nutrient-rich and nutrient-poor soils, respectively, and one habitat generalist. Across all species, growth was higher in high than low light and on more nutrient rich soil. Although species differed in growth rates, the ranking of species, in terms of growth, was consistent across the four treatments. Nutrient-rich soils improved seedling survival and increased growth of three species even under low light. Slower-growing species increased root allocation and reduced specific leaf area (SLA) and leaf area ratio (LAR) in response to decreased nutrient supply. All species increased LAR in response to low light. Maximum growth rates were negatively correlated with survival in the most resource-limited environment. Nutrient-poor soil specialists had low maximum growth rates but high survival at low resource availability. Specialists of nutrient-rich soils, plus the habitat generalist, had the opposite suite of traits. Fitness component trade-offs may be driven by both light and belowground resource availability. These trade-offs contribute to differentiation of tropical tree species among habitats defined by edaphic variation. [source] |