Nutrient Uptake (nutrient + uptake)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Nutrient Uptake and Mineralization during Leaf Decay in Streams , a Model Simulation

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 4 2009
J. R. Webster
Abstract We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of decomposition, while mineralization may produce increases in concentrations during later stages of decomposition. The simulations also showed that initial nutrient content of the leaves can affect the stream nutrient concentration dynamics and determine whether nitrogen or phosphorus is the limiting nutrient. Finally, the simulations suggest a net retention (uptake > mineralization) of nutrients in headwater streams, which is balanced by export of particulate organic nutrients to downstream reaches. Published studies support the conclusion that uptake can substantially change stream nutrient concentrations. On the other hand, there is little published evidence that mineralization also affects nutrient concentrations. Also, there is little information on direct microbial utilization of nutrients contained in the decaying leaves themselves. Our results suggest several directions for research that will improve our understanding of the complex relationship between leaf decay and nutrient dynamics in streams. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]


Plant Aquaporins: New Perspectives on Water and Nutrient Uptake in Saline Environment

PLANT BIOLOGY, Issue 5 2006
M. C. del Martínez-Ballesta
Abstract: The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available. [source]


Effect of Elicitation on Growth, Respiration, and Nutrient Uptake of Root and Cell Suspension Cultures of Hyoscyamusmuticus

BIOTECHNOLOGY PROGRESS, Issue 2 2002
Edgard B. Carvalho
The elicitation of Hyoscyamus muticus root and cell suspension cultures by fungal elicitor from Rhizoctonia solani causes dramatic changes in respiration, nutrient yields, and growth. Cells and mature root tissues have similar specific oxygen uptake rates (SOUR) before and after the onset of the elicitation process. Cell suspension SOUR were 11 and 18 ,mol O2/g FW·h for non-elicited control and elicited cultures, respectively. Mature root SOUR were 11 and 24 ,mol O2/g FW·h for control and elicited tissue, respectively. Tissue growth is significantly reduced upon the addition of elicitor to these cultures. Inorganic yield remains fairly constant, whereas yield on sugar is reduced from 0.532 to 0.352 g dry biomass per g sugar for roots and 0.614 to 0.440 g dry biomass per g sugar for cells. This reduction in yield results from increased energy requirements for the defense response. Growth reduction is reflected in a reduction in root meristem (tip) SOUR, which decreased from 189 to 70 ,mol O2/g FW·h upon elicitation. Therefore, despite the increase in total respiration, the maximum local oxygen fluxes are reduced as a result of the reduction in metabolic activity at the meristem. This distribution of oxygen uptake throughout the mature tissue could reduce mass transfer requirements during elicited production. However, this was not found to be the case for sesquiterpene elicitation, where production of lubimin and solavetivone were found to increase linearly up to oxygen partial pressures of 40% O2 in air. SOUR is shown to similarly increase in both bubble column and tubular reactors despite severe mass transfer limitations, suggesting the possibility of metabolically induced increases in tissue convective transport during elicitation. [source]


Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum

FRESHWATER BIOLOGY, Issue 6 2006
T. A. WARNAARS
Summary 1. A fluid-flow reactor using submersible speakers was constructed to generate small-scale fluid motion similar to conditions measured in open water environments; flow was quantified by particle image velocimetry. Additionally a Couette-type rotating cylinder was used to generate shear flows; flow was quantified using an optical hotwire probe and torque measurements. Growth rates of the green alga Selenastrum capricornutum were determined from changes in cell counts and viability was tested using the fluorogenic probe fluoresceine diacetate. 2. Evidence that fluid motion directly affects growth rates was obtained as a significant difference between growth in a moving versus non-moving fluid. A near 2-fold increase in growth rate was achieved for an energy dissipation rate of , = 10,7 m2 s,3; a rate common in lakes and oceans. The onset of the viability equilibrium, identified as the day of the test period when the number of active cells equalled non-active cells, was delayed by 2 days for moving fluid conditions as compared with a non-moving fluid. 3. Nutrient uptake was determined by a decrease in the bulk fluid concentration and cellular phosphorus concentration was also estimated. The thickness of the diffusive sublayer surrounding a cell, a zone dominated by molecular diffusion, was estimated. Increasing fluid motion was found to decrease the thickness of this layer. The Sherwood number (ratio of total mass flux to molecular mass flux) showed that advective flux surrounding cells dominated molecular diffusion flux with regard to Péclet numbers (ratio of advective transport to molecular diffusion transport). Fluid motion facilitated uptake rates and resulted in increased growth rates, compared with no-flow conditions. The rate-of-rotation and the rate-of-strain in a moving fluid equally mediated the diffusive sublayer thickness surrounding the cells. Our study demonstrates that small-scale fluid motion mediates algal growth kinetics and therefore should be included in predictive models for algal blooms. [source]


Atmospheric CO2 enrichment facilitates cation release from soil

ECOLOGY LETTERS, Issue 3 2010
L. Cheng
Ecology Letters (2010) 13: 284,291 Abstract Atmospheric CO2 enrichment generally stimulates plant photosynthesis and nutrient uptake, modifying the local and global cycling of bioactive elements. Although nutrient cations affect the long-term productivity and carbon balance of terrestrial ecosystems, little is known about the effect of CO2 enrichment on cation availability in soil. In this study, we present evidence for a novel mechanism of CO2 -enhancement of cation release from soil in rice agricultural systems. Elevated CO2 increased organic C allocation belowground and net H+ excretion from roots, and stimulated root and microbial respiration, reducing soil redox potential and increasing Fe2+ and Mn2+ in soil solutions. Increased H+, Fe2+, and Mn2+ promoted Ca2+ and Mg2+ release from soil cation exchange sites. These results indicate that over the short term, elevated CO2 may stimulate cation release from soil and enhance plant growth. Over the long-term, however, CO2 -induced cation release may facilitate cation losses and soil acidification, negatively feeding back to the productivity of terrestrial ecosystems. [source]


The influence of ant-attendance on aphid behaviour investigated with the electrical penetration graph technique

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2002
Gisep Rauch
Abstract For the mutualistic interaction between the aphid Metopeurum fuscoviride Stroyan (Homoptera: Aphididae) and the ant Lasius niger L. (Hymenoptera: Formicidae) it has been shown that ant-tended aphids develop faster, reproduce at a higher rate, and live longer than aphids not tended by ants. We used electrical penetration graphs (EPG) to investigate if behavioural patterns differ between ant-tended and untended M. fuscoviride during 8 h experiments. Measurements were made on adult aphids from four different ant-tended colonies that continued to be tended by L. niger during the experiments, and from four different colonies where ant workers were excluded several days before the start of the experiment and that were also not tended by ants during the experiments. Ants readily tended wired aphids and ant tending did not interfere with the EPG measurements. There were no significant differences in the duration of sieve element penetration or in any other analysed feeding-related EPG parameters between ant-tended and untended individuals. However, the quality of the EPG recordings did not allow the distinction between the EPG-waveform E1 (salivation only) and E2 (salivation and ingestion). These results suggest that the changes in life-history traits of ant-tended aphids do not result from changes in time of sieve element penetration waveforms. Alternative mechanisms may involve an increase in the rate of sap uptake or a higher effectiveness in nutrient uptake in the presence of ants. Our study demonstrates that the EPG technique is a useful tool to investigate the feeding behaviour of aphids during interactions with ants. [source]


Genetic processes in arbuscular mycorrhizal fungi

FEMS MICROBIOLOGY LETTERS, Issue 2 2005
Teresa E. Pawlowska
Abstract Arbuscular mycorrhizal (AM) fungi (Glomeromycota) colonize roots of the majority of land plants and facilitate their mineral nutrient uptake. Consequently, AM fungi play an important role in terrestrial ecosystems and are becoming a component of sustainable land management practices. The absence of sexual reproductive structures in modern Glomeromycota combined with their long evolutionary history suggest that these fungi may represent an ancient asexual lineage of great potential interest to evolutionary biology. However, many aspects of basic AM fungal biology, including genome structure, within-individual genetic variation, and reproductive mode are poorly understood. These knowledge gaps hinder research on the mechanisms of AM fungal interactions with individual plants and plant communities, and utilization of AM fungi in agricultural practices. I present here the current state of research on the reproduction in AM fungi and indicate what new findings can be expected in the future. [source]


Effects of arbuscular mycorrhizae on biomass and nutrients in the aquatic plant Littorella uniflora

FRESHWATER BIOLOGY, Issue 9 2006
FREDE Ø. ANDERSEN
Summary 1. It has been hypothesised that the symbiosis with arbuscular mycorrhizal fungi (AMF) leads to a higher uptake of phosphorus (P) and nitrogen (N) in aquatic plants, but it has never been shown experimentally without the use of fungicides. In particular, the symbiosis may be important for nutrient uptake by isoetids in oligotrophic lakes, where low concentrations of inorganic N and P both in the water and in the sediment limit the growth of plants and where symbiosis facilitates the uptake of nutrients from the sediment. 2. Plants of the isoetid Littorella uniflora were propagated under the sterile conditions without an AMF infection. The plants were then grown for 60 days with and without re-infection by AMF, and with either high (150 ,m) or low (ambient concentration approximately 15 ,m) CO2 concentration. 3. The study proved that the symbiosis between AMF and L. uniflora had a positive impact on the retention of N and P in the plants at very low nutrient concentrations in the water and on biomass development. Shoot biomass and standing stocks of both P and N were significantly higher in re-infected plants. 4. Raised CO2 concentration resulted in a fivefold increase in hyphal infection, but had no impact on the number of arbuscules and vesicles in the cross sections. There were significantly higher biomass and lower tissue P and N concentrations in the plants from high CO2 treatments. This resulted in similar standing stocks of P and N in plants from low and high CO2 treatments. 5. The results from this study showed that the symbiosis between AMF and L. uniflora is an important adaptation enabling isoetids to grow on nutrient-poor sediments in oligotrophic lakes. [source]


Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum

FRESHWATER BIOLOGY, Issue 6 2006
T. A. WARNAARS
Summary 1. A fluid-flow reactor using submersible speakers was constructed to generate small-scale fluid motion similar to conditions measured in open water environments; flow was quantified by particle image velocimetry. Additionally a Couette-type rotating cylinder was used to generate shear flows; flow was quantified using an optical hotwire probe and torque measurements. Growth rates of the green alga Selenastrum capricornutum were determined from changes in cell counts and viability was tested using the fluorogenic probe fluoresceine diacetate. 2. Evidence that fluid motion directly affects growth rates was obtained as a significant difference between growth in a moving versus non-moving fluid. A near 2-fold increase in growth rate was achieved for an energy dissipation rate of , = 10,7 m2 s,3; a rate common in lakes and oceans. The onset of the viability equilibrium, identified as the day of the test period when the number of active cells equalled non-active cells, was delayed by 2 days for moving fluid conditions as compared with a non-moving fluid. 3. Nutrient uptake was determined by a decrease in the bulk fluid concentration and cellular phosphorus concentration was also estimated. The thickness of the diffusive sublayer surrounding a cell, a zone dominated by molecular diffusion, was estimated. Increasing fluid motion was found to decrease the thickness of this layer. The Sherwood number (ratio of total mass flux to molecular mass flux) showed that advective flux surrounding cells dominated molecular diffusion flux with regard to Péclet numbers (ratio of advective transport to molecular diffusion transport). Fluid motion facilitated uptake rates and resulted in increased growth rates, compared with no-flow conditions. The rate-of-rotation and the rate-of-strain in a moving fluid equally mediated the diffusive sublayer thickness surrounding the cells. Our study demonstrates that small-scale fluid motion mediates algal growth kinetics and therefore should be included in predictive models for algal blooms. [source]


The response of manured forage maize to starter phosphorus fertilizer on chalkland soils in southern England

GRASS & FORAGE SCIENCE, Issue 2 2000
Withers
The impact of various starter phosphorus (P) fertilizers on the growth, nutrient uptake and dry-matter (DM) yield of forage maize (Zea mais) continuously cropped on the same area and receiving annual, pre-sowing, broadcast dressings of liquid and semi-solid dairy manures was investigated in two replicated plot experiments and in whole-field comparisons in the UK. In Experiment 1 on a shallow calcareous soil (27 mg l,1 Olsen-extractable P) in 1996, placement of starter P fertilizer (17 or 32 kg ha,1) did not benefit crop growth or significantly (P > 0·05) increase DM yield at harvest. However, in Experiment 2 on a deeper non-calcareous soil (41 mg l,1 Olsen-extractable P) in 1997, placement of starter P fertilizer (19 or 41 kg P ha,1), either applied alone or in combination with starter N fertilizer (10 or 25 kg N ha,1), significantly increased early crop growth (P < 0·01) and DM yield at harvest by 1·3 t ha,1 (P < 0·05) compared with a control without starter N or P fertilizer. Placement of starter N fertilizer alone did not benefit early crop growth, but gave similar yields as P, or N and P, fertilizer treatments at harvest. Large treatment differences in N and P uptake by mid-August had disappeared by harvest. In field comparisons over the 4-year period 1994,97, the addition of starter P fertilizer increased field cumulative surplus P by over 70%, but without significantly (P > 0·05) increasing DM yield, or nutrient (N and P) uptake, compared with fields that did not receive starter P fertilizer. The results emphasized the extremely low efficiency with which starter P fertilizers are utilized by forage maize and the need to budget manure and fertilizer P inputs more precisely in order to avoid excessive soil P accumulation and the consequent increased risk of P transfer to water causing eutrophication. [source]


Cadmium phytoextraction capacity in eight C3 herbage grass species

GRASSLAND SCIENCE, Issue 1 2008
Shamima Sabreen
Abstract Grasses are excellent candidates for phytoremediation because of their high biomass production, high adaptability and low management cost. This study assesses interspecific variation of cadmium (Cd) phytoextraction capabilities in eight C3 grass species. Populations of 30-day-old C3 grass species , namely, Agrostis alba, Anthoxanthum odoratum, Dactylis glomerata, Festuca arundinacea, Festuca pratensis, Lolium multiflorum, Lolium perenne and Poa pratensis, were grown hydroponically for 15 days with different concentrations of Cd (0, 5, 10 and 50 µM). For each species, shoot biomass, the proportion of growth inhibition (GI, %), shoot Cd concentration and accumulation, shoot nutrient uptake, and the proportion of uptake inhibition (UI, %) of nutrient minerals were evaluated. Effects of Cd application included stunted growth. The GI increased from 5% to 70% with an increase in Cd concentrations. For all Cd treatments, L. multiflorum showed the highest shoot dry biomass. Shoot Cd concentrations negatively affected mineral nutrient uptake. The highest Cd treatment caused UI of various elements of 37,95%. Under 50-µM Cd treatment, Cd accumulation varied by 20 times among species, and L. multiflorum showed the highest Cd accumulation (116.46 µg plant,1). Our results indicate that L. multiflorum exhibited high degrees of both Cd tolerance and Cd phytoextraction capacity among grass species. [source]


Comparative Effect of Nitrogen Sources on Maize under Saline and Non-saline Conditions

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2008
M. Irshad
Abstract The main objective of this study was to compare the relationship between biomass yield and nutrient uptake in salt-stressed maize (Zea mays L.) following nitrogen (N) nutrition in a greenhouse. Three forms of N were applied, each at the rate of 100 kg ha,1: urea-N, nitrate-N, 1/2 urea-N + 1/2 nitrate-N (mixed-N) and no N application (control). Maize was grown as a test crop for 6 weeks. All N sources greatly stimulated crop growth and nutrient uptake compared with the control. The biomass (shoot and root) of maize was significantly greater in mixed-N treatment than in single sources in saline soil whereas it varied in the order of urea-N > mixed-N > nitrate-N > control in non-saline soil. Under both soil conditions, the concentration of Ca, Mg and Na in shoot was highest in nitrate-N treatments while that of K was highest in the control. Shoot nitrogen concentration was not significantly different among N sources under non-saline treatment, whereas under saline conditions, the concentration varied markedly in the order of nitrate-N > urea-N > mixed-N > control. The mineral concentrations in the shoot increased under salt treated soil when compared with non-saline soil. The ratios of Na/K, Na/Ca and Na/Mg were also higher under salt stress due to higher accumulation of Na ion in the shoot. Among N-fertilizer sources, Na/Ca and Na/Mg ratios were highest in control whereas Na/K ratio was the highest in nitrate-N treatment. The lowest cation ratios were noted in mixed-N-treated plants under both soils. Regression analysis showed that maize biomass was related to N concentration by the following equations: Y = ,4.54 + 0.97N for the non-saline soil and Y = 0.89 + 0.25N for the saline soil. Nitrogen use efficiency for non-saline soil exceeded that of saline soil by 15 %. [source]


Ant nest location, soil nutrients and nutrient uptake by ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition?

JOURNAL OF ECOLOGY, Issue 3 2010
Diane Wagner
Summary 1. As central place foragers, ants accumulate organic debris near their nests. Consequently, soil nutrient stocks are often enriched near the nest site. We investigated the hypothesis that plant-derived food sources, such as extrafloral nectar (EFN), can encourage soil-dwelling ant colonies to nest near the plant, thereby inadvertently providing the plant with an additional source of mineral nutrients. The study focused on a population of Acacia constricta, a North American shrub bearing EFNs. 2. Several lines of evidence supported the notion that food rewards drew ant nests close to A. constricta plants. Firstly, ant species that visit EFNs nested significantly closer to A. constricta plants than would be expected by chance, whereas this was not the case for two ant species that do not visit EFNs. Secondly, A. constricta plants with an ant nest occurring naturally underneath the canopy had greater foliar volume, more EFNs per leaf and more EFNs per cm of leaf rachis than plants lacking an ant nest under the canopy. Thirdly, experimental supplementation of the nectar resources on acacias led to the establishment of significantly more new nests near the plant, relative to controls. However, nectar supplementation did not affect acacia seed production within the year of the study. 3. Soil from the nests of three, EFN-visiting ant species contained higher average stocks of most mineral nutrients than nearby soils outside the influence of the nest. 4. To test whether A. constricta can assimilate the nutrients in ant nests, we fed 15N-labelled food to Dorymyrmex sp. (smithi complex) workers nesting near acacias. Twenty-four days later, the leaves of acacias with an experimentally fed ant colony under the canopy contained significantly higher 15N and %N than acacias without a nest under the canopy, indicating that acacias assimilated and benefited from nutrients derived from ants. 5.Synthesis. The results indicate that nectar resources can attract the nests of some ant species, and that plants may benefit from access to soil nutrients derived from ant nests. Our data support the hypothesis that EFNs may confer nutritive, as well as protective, benefits. [source]


A test of the indirect facilitation model in a temperate hardwood forest of the northern French Alps

JOURNAL OF ECOLOGY, Issue 6 2003
Jean-Philippe Pages
Summary 1We tested the hypothesis that the more frequent occurrence of tree seedlings below the adult trees than in canopy openings might be explained by indirect facilitation. In a temperate hardwood forest, we compared the performance of five target tree seedlings (Picea abies, Abies alba, Fagus sylvatica, Acer pseudoplatanus and Quercus petraea), transplanted with or without a herbaceous competitor (Molinia caerulea), either within the forest or into experimentally created gaps. 2We quantified changes in understorey biomass, light penetration and available forms of soil nitrogen during three growing seasons. 3Photosynthetic photon flux density and total biomass of Molinia were significantly higher in the gap treatment than within the forest. Total available nitrogen was higher in the gaps in the absence of Molinia, but higher in the forest in the presence of Molinia. 4Quercus survival was very low within the forest because of fungal infection, whereas survival was very high for the four other tree species in all combinations of the two treatments. 5Although the competitive effect of Molinia on the growth of the tree seedlings was much greater in the gap treatment, seedling growth was lower within the forest. We conclude that the tree canopy imposed strong light competition, and that this direct negative influence was much greater than any indirect positive effect of increased availability of nutrients to tree seedlings, due to reduced nutrient uptake by Molinia. 6Target species responses to treatments were similar, despite strong differences in nitrogen requirements between species. This may be due to the overwhelming negative influence of the tree canopy in our experiment. [source]


PHOTOSYNTHETIC PERFORMANCE, LIGHT ABSORPTION, AND PIGMENT COMPOSITION OF MACROCYSTIS PYRIFERA (LAMINARIALES, PHAEOPHYCEAE) BLADES FROM DIFFERENT DEPTHS,

JOURNAL OF PHYCOLOGY, Issue 6 2006
María Florencia Colombo-Pallotta
Macrocystis pyrifera (L.) C. Agardh is a canopy-forming species that occupies the entire water column. The photosynthetic tissue of this alga is exposed to a broad range of environmental factors, particularly related to light quantity and quality. In the present work, photosynthetic performance, light absorption, pigment composition, and thermal dissipation were measured in blades collected from different depths to characterize the photoacclimation and photoprotection responses of M. pyrifera according to the position of its photosynthetic tissue in the water column. The most important response of M. pyrifera was the enhancement of photoprotection in surface and near-surface blades. The size of the xanthophyll cycle pigment pool (XC) was correlated to the nonphotochemical quenching (NPQ) of chl a fluorescence capacity of the blades. In surface blades, we detected the highest accumulation of UV-absorbing compounds, photoprotective carotenoids, ,XC, and NPQ. These characteristics were important responses that allowed surface blades to present the highest maximum photosynthetic rate and the highest PSII electron transport rate. Therefore, surface blades made the highest contribution to algae production. In contrast, basal blades presented the opposite trend. These blades do not to contribute significantly to photosynthetate production of the whole organism, but they might be important for other functions, like nutrient uptake. [source]


DIEL RHYTHM OF ALGAL PHOSPHATE UPTAKE RATES IN P-LIMITED CYCLOSTATS AND SIMULATION OF ITS EFFECT ON GROWTH AND COMPETITION1

JOURNAL OF PHYCOLOGY, Issue 4 2002
Chi-Yong Ahn
Oscillations in the phosphate (Pi) uptake rates for three species of green algae were examined in a P-limited cyclostat. For Ankistrodesmus convolutus Corda and Chlorella vulgaris Beyerinck, the Pi uptake rates increased during the daytime and decreased at night. In contrast, Chlamydomonas sp. exhibited the opposite uptake pattern. Cell densities also oscillated under a light:dark cycle, dividing at a species-specific timing rather than continuously. In general, the cell densities exhibited an inverse relationship with the Pi uptake rates. A competition experiment between A. convolutus and C. vulgaris in a P-limited cyclostat resulted in the dominance of C. vulgaris, regardless of the relative initial cell concentrations. Chlorella vulgaris also dominated in a mixed culture with Chlamydomonas sp., irrespective of the initial seeding ratio and dilution rate. However, Chlamydomonas sp. and A. convolutus coexisted in the competition experiment with gradual decrease of Chlamydomonas sp. when equally inoculated. Mathematical expressions of the oscillations in the Pi uptake rate and species-specific cell division gate were used to develop a simulation model based on the Droop equation. The simulation results for each of the species conformed reasonably well to the experimental data. The results of the competition experiments also matched the competition simulation predictions quite well, although the experimental competition was generally more delayed than the simulations. In conclusion, the model simulation that incorporated the effect of diel rhythms in nutrient uptake clearly demonstrated that species diversity could be enhanced by different oscillation patterns in resource uptake, even under the condition of limitation by the same resource. [source]


Drought and salinity: A comparison of their effects on mineral nutrition of plants

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2005
Yuncai Hu
Abstract The increasing frequency of dry periods in many regions of the world and the problems associated with salinity in irrigated areas frequently result in the consecutive occurrence of drought and salinity on cultivated land. Currently, 50% of all irrigation schemes are affected by salinity. Nutrient disturbances under both drought and salinity reduce plant growth by affecting the availability, transport, and partitioning of nutrients. However, drought and salinity can differentially affect the mineral nutrition of plants. Salinity may cause nutrient deficiencies or imbalances, due to the competition of Na+ and Cl, with nutrients such as K+, Ca2+, and NO. Drought, on the other hand, can affect nutrient uptake and impair acropetal translocation of some nutrients. Despite contradictory reports on the effects of nutrient supply on plant growth under saline or drought conditions, it is generally accepted that an increased nutrient supply will not improve plant growth when the nutrient is already present in sufficient amounts in the soil and when the drought or salt stress is severe. A better understanding of the role of mineral nutrients in plant resistance to drought and salinity will contribute to an improved fertilizer management in arid and semi-arid areas and in regions suffering from temporary drought. This paper reviews the current state of knowledge on plant nutrition under drought and salinity conditions. Specific topics include: (1) the effects of drought and salt stress on nutrient availability, uptake, transport, and accumulation in plants, (2) the interactions between nutrient supply and drought- or salt-stress response, and (3) means to increase nutrient availability under drought and salinity by breeding and molecular approaches. Trockenstress und Salzstress , Vergleich der Auswirkungen auf die mineralische Ernährung von Pflanzen Eine Zunahme von Trockenperioden in vielen Ländern der Welt und assoziierte Probleme der Versalzung in bewässerten Gebieten führen häufig zu gleichzeitigem Auftreten von Trockenheit und Salinität. Gegenwärtig sind weltweit ungefähr 50 % aller Bewässerungsflächen durch Salinität beeinträchtigt. Nährstoffstörungen bei Trocken- und Salzstress beeinträchtigen die Verfügbarkeit, den Transport und die Verteilung von Nährelementen in der Pflanze und reduzieren somit das Pflanzenwachstum. Trocken- und Salzstress können sich jedoch unterschiedlich auf die Nährstoffversorgung der Pflanzen auswirken. Salinität kann aufgrund der Konkurrenz zwischen Na+ bzw. Cl, und Nährelementen wie K+, Ca2+ und NO Nährstoffmängel oder -ungleichgewichte in den Pflanzen verursachen. Trockenstress kann sowohl die Nährstoffaufnahme als auch den akropetalen Transport einiger Elemente beeinträchtigen. Trotz kontroverser Schlussfolgerungen in der Literatur hinsichtlich der Wechselbeziehungen von Nährstoffangebot und Trocken- bzw. Salzstress auf das Pflanzenwachstum ist allgemein akzeptiert, dass Nährstoffzufuhr das Pflanzenwachstum nicht verbessert, wenn ausreichend Nährstoffe im Boden verfügbar sind oder bei stark ausgeprägter Trockenheit oder Salinität. Ein besseres Verständnis der Rolle von Mineralstoffen in der Toleranz von Pflanzen gegenüber Trocken- oder Salzstress dürfte gerade in ariden und semi-ariden Gebieten sowie in Regionen, die unter periodischer Trockenheit leiden, zu verbesserten Düngestrategien beitragen. In der vorliegenden Arbeit wird der gegenwärtige Kenntnisstand der mineralischen Ernährung bei Trockenheit und Salinität diskutiert. Schwerpunkte der Betrachtungen sind (1) die Auswirkungen von Trockenheit und Salzstress auf die Verfügbarkeit, die Aufnahme, den Transport und die Anreicherung von Nährelementen in der Pflanze, (2) Wechselbeziehungen zwischen dem Nährstoffangebot und Trockenheit oder Salinität sowie (3) Maßnahmen zur Verbesserung der Nährstoffverfügbarkeit bei Trockenheit und Salzstress mittels züchterischer und molekularbiologischer Ansätze. [source]


Nutrient Uptake in a Large Urban River,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2007
Catherine A. Gibson
Abstract:, Small streams have been shown to be efficient in retaining nutrients and regulating downstream nutrient fluxes, but less is known about nutrient retention in larger rivers. We quantified nutrient uptake length and uptake velocity in a regulated urban river to determine the river's ability to retain nutrients associated with wastewater treatment plant (WWTP) effluent. We measured net uptake of soluble reactive phosphorus (SRP), dissolved organic phosphorus, ammonium (NH4), nitrate, and dissolved organic nitrogen in the Chattahoochee River, Atlanta, GA by following the downstream decline of nutrients and fluoride from WWTP effluent on 10 dates under low flow conditions. Uptake of all nutrients was sporadic. On many dates, there was no evidence of measurable nutrient uptake lengths within the reach; indeed, on several dates release of inorganic N and P within the sample reach led to increased nutrient export downstream. When uptake occurred, SRP uptake length was negatively correlated with total suspended solids and temperature. Uptake velocities of SRP and NH4 in the Chattahoochee River were lower than velocities in less-modified systems, but they were similar to those measured in other WWTP impacted systems. Lower uptake velocities indicate a diminished capacity for nutrient uptake. [source]


Growth and nutrient uptake of tea under different aluminium concentrations

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 9 2008
Ka Fai Fung
Abstract BACKGROUND: The uptake of essential nutrients such as P, Fe, K, Ca and Mg is depressed by Al in most plants. This study aimed to investigate the concentrations at which Al could be toxic to C. sinensis. The suppression of nutrient uptake was investigated by comparing growth and nutrient uptake at different Al doses. The quantification of Al in apoplasm, symplasm and cell wall of C. sinensis was also studied. RESULTS: In the absence of Al, the growth of C. sinensis was retarded. Test doses over 1 mM Al were toxic to C. sinensis. At concentrations of 0.25 or 0.5 mM, distinct rhizostimulation was noted, and within a short period (2 weeks), the biomass of these seedlings increased by 44 and 35%, respectively, compared to 0 and 14% in control and 1 mM Al, respectively. In general, at beneficial doses (0.25, 0.5), Al stimulated the uptake of Ca, Mg, K and Mn, whereas the uptake of Fe, Cu and Zn was retarded. Fine roots of the seedlings had the highest levels of Al, compared to leaves, branches and main roots. In the root tips, most of the Al was present in the soluble fractions of the apoplasm and symplasm, and very low levels of Al was bound to the cell walls, which was in good agreement with the observed mobility of Al in C. sinensis. CONCLUSION: The results of the present study support the view that Al plays a nutritive role for C. sinensis. The rhizostimulatory effects of Al on C. sinensis have been explained as a consequence of enhanced nutrient uptake. Copyright © 2008 Society of Chemical Industry [source]


Foliar demand and resource economy of nutrients in dry tropical forest species

JOURNAL OF VEGETATION SCIENCE, Issue 1 2001
C.B. Lal
Important phenological activities in seasonally dry tropical forest species occur within the hot-dry period when soil water is limiting, while the subsequent wet period is utilized for carbon accumulation. Leaf emergence and leaf area expansion in most of these tree species precedes the rainy season when the weather is very dry and hot and the soil cannot support nutrient uptake by the plants. The nutrient requirement for leaf expansion during the dry summer period, however, is substantial in these species. We tested the hypothesis that the nutrients withdrawn from the senescing leaves support the emergence and expansion of leaves in dry tropical woody species to a significant extent. We examined the leaf traits (with parameters such as leaf life span, leaf nutrient content and retranslocation of nutrients during senescence) in eight selected tree species in northern India. The concentrations of N, P and K declined in the senescing foliage while those of Na and Ca increased. Time series observations on foliar nutrients indicated a substantial amount of nutrient resorption before senescence and a ,tight nutrient budgeting'. The resorbed N-mass could potentially support 50 to 100% and 46 to 80% of the leaf growth in terms of area and weight, respectively, across the eight species studied. Corresponding values for P were 29 to 100% and 20 to 91%, for K 29 to 100% and 20 to 57%, for Na 3 to 100% and 1 to 54%, and for Ca 0 to 32% and 0 to 30%. The species differed significantly with respect to their efficiency in nutrient resorption. Such interspecific differences in leaf nutrient economy enhance the conservative utilization of soil nutrients by the dry forest community. This reflects an adaptational strategy of the species growing on seasonally dry, nutrient-poor soils as they tend to depend more or less on efficient internal cycling and, thus, utilize the retranslocated nutrients for the production of new foliage biomass in summer when the availability of soil moisture and nutrients is severely limited. [source]


Identification of Candida albicans genes induced during thrush offers insight into pathogenesis

MOLECULAR MICROBIOLOGY, Issue 5 2003
Shaoji Cheng
Summary Candida albicans causes a wide spectrum of diseases, ranging from mucocutaneous infections like oral thrush to disseminated candidiasis. Screening for C. albicans genes expressed within infected hosts might advance understanding of candidal pathogenesis, but is impractical using existing techniques. In this study, we used an antibody-based strategy to identify C. albicans genes expressed during thrush. We adsorbed sera from HIV-infected patients with thrush against candidal cells grown in vitro and screened a C. albicans genomic expression library. We identified 10 genes encoding immunogenic antigens and used reverse transcription-polymerase chain reaction to verify that they were induced within thrush pseudomembranes recovered from a patient. The in vivo induced genes are involved in diverse functions, including regulation of yeast-hyphal morphogenesis, adhesion to host cells, nutrient uptake, phospholipid biosynthesis and amino acid catabolism. Four genes encode known virulence determinants (HWP1, CST20, CPP1 and RBF1). Another gene, LPD1, for which a role in candidal pathogenesis is unknown, encodes a protein homologous to a bacterial virulence determinant. Most importantly, disruption of CaNOT5, a newly identified gene, conferred defects in morphogenesis, decreased adherence to human buccal epithelial cells and attenuated mortality during murine disseminated candidiasis, proving that our strategy can identify genes encoding novel virulence determinants. [source]


Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria

NEW PHYTOLOGIST, Issue 2 2003
Damond A. Kyllo
Summary ,,Root hydraulic conductance (Kr) was measured for five understory shrub species of the neotropical moist forest to determine the effects of arbuscular mycorrhizas (AM) for both carbon-rich and carbon-limited host plants. ,,Kr was measured using a high pressure flow meter (HPFM) for potted plants grown in a factorial combination of AM fungi (presence/absence) and light (3.5 and 30% of full sun, low/high). ,,AM colonization improved Kr for the more shade-tolerant species plants when growing in low light. By contrast, water uptake efficiency of the light-demanding species was significantly decreased by AM fungi in high light. Regardless of AM colonization, light-demanding species had a lower capacity than shade-tolerant species to meet transpirational demands, and they allocated substantially more to fine root production relative to leaf area when colonized. ,,The differential effects of AM colonization and light on a species' root hydraulic conductance in relation to phylogeny and light adaptation demonstrate that AM fungi may be critical in determining early plant succession and community composition not only due to effects on nutrient uptake, but on water uptake as well. [source]


The ups and downs of signalling between root and shoot

NEW PHYTOLOGIST, Issue 3 2000
Christine Beveridge
It is becoming increasingly apparent that the long-distance signalling associated with many developmental processes is complex and that novel hormone-like signals may play substantial roles. The past decades have seen several substances (e.g. brassinosteroids, systemin and other polypeptides, mevalonic and jasmonic acids, polyamines, oligosaccharides, flavonoids, and quinones) vie for a place among the classical plant hormones (e.g. Spaink, 1996). Recent microinjection and grafting studies have also shown that RNA may act as a long-distance signal (Jorgensen et al., 1998; Xoconostle-Cázares et al., 1999). In this issue, Hannah et al. describe long-distance signalling and the regulation of root,shoot partitioning in dwarf lethal or dosage-dependent lethal (DL) mutants of common bean (Shii et al., 1980, 1981), and present evidence indicating that substances in addition to classical plant hormones (e.g. cytokinins) may be involved. As in the report by Hannah et al., much of the evidence for roles of unidentified long-distance signals in the control of plant development is indirect. The possibility that a small number of long-distance signals might control a multitude of developmental processes arises through the potential for differences in tissue sensitivity, fluctuations in hormone levels and differences in the nature of responses of different tissues to the same hormone. Consequently, particular hormones may influence numerous processes seemingly simultaneously, yet independently. Even so, long-distance signalling is involved in processes as diverse as root,shoot balance, senescence, branching, flowering, nodulation, stress responses and nutrient uptake. Through comparison of even a few different developmental processes, progress can be made to reveal the true complexity of plant development. Using this approach it is also clear that many unknown signals may be involved. [source]


The representation of root processes in models addressing the responses of vegetation to global change

NEW PHYTOLOGIST, Issue 1 2000
F. I. WOODWARD
The representation of root activity in models is here confined to considerations of applications assessing the impacts of changes in climate or atmospheric [CO2]. Approaches to modelling roots can be classified into four major types: models in which roots are not considered, models in which there is an interplay between only selected above-ground and below-ground processes, models in which growth allocation to all parts of the plants depends on the availability and matching of the capture of external resources, and models with explicit treatments of root growth, architecture and resource capture. All models seem effective in describing the major root activities of water and nutrient uptake, because these processes are highly correlated, particularly at large scales and with slow or equilibrium dynamics. Allocation models can be effective in providing a deeper, perhaps contrary, understanding of the dynamic underpinning to observations made only above ground. The complex and explicit treatment of roots can be achieved only in small-scale highly studied systems because of the requirements for many initialized variables to run the models. [source]


Nuclear receptors of the enteric tract: guarding the frontier

NUTRITION REVIEWS, Issue 2008
Daniel R Schmidt
In addition to its classical role in mineral homeostasis, the vitamin D receptor has been implicated in diverse physiologic and pathophysiologic processes including immunoregulation and cancer. Interestingly, the vitamin D receptor has been evolutionarily and functionally linked to a select group of nuclear receptors based on a common organism-wide tissue expression profile. These members of the nuclear receptor superfamily, which include the bile acid receptor, xenobiotic receptors, and several orphan nuclear receptors, comprise a transcriptional regulatory network that functions in nutrient uptake, xenobiotic metabolism, and mucosal protection. The major homeostatic functions of the enteric nuclear receptor network are the topic of this review. [source]


Physiological Responses of Forest Trees to Heat and Drought

PLANT BIOLOGY, Issue 5 2006
H. Rennenberg
Abstract: The heat wave of summer 2003 was the largest and the most persistent ever experienced in Central Europe and has fuelled concern about the effects of climate change on European ecosystems. Since forests constitute the most important European ecosystems, in this review article we assess current knowledge on the effects of heat and drought on key metabolic processes for growth and productivity of forest trees. In particular, the general consequences of heat and drought on (1) photosynthesis and respiration at the cellular and community level, and (2) on nutrient uptake, partitioning and competition for nutrients are summarized. The latter are a major sink for photosynthetic energy and, therefore, are indirectly but strongly connected to the performance of photosynthesis. In addition, the interaction of heat and drought with stress compensation mechanisms and emission of biogenic volatile organic compounds (BVOC) are discussed, since these processes are directly connected to carbon metabolism. Effects on the emission of BVOC are also included because they constitute an important feedback mechanism on ozone formation and, thus, on atmospheric pollution. As far as available, data collected during the 2003 heat wave are included and discussed. [source]


Differential Regulation of Five Pht1 Phosphate Transporters from Maize (Zea mays L.)

PLANT BIOLOGY, Issue 2 2006
R. Nagy
Abstract: Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth. [source]


Predicting the regenerative capacity of conifer somatic embryogenic cultures by metabolomics

PLANT BIOTECHNOLOGY JOURNAL, Issue 9 2009
Andrew R. Robinson
Summary Somatic embryogenesis in gymnosperms is an effective approach to clonally propagating germplasm. However, embryogenic cultures frequently lose regenerative capacity. The interactions between metabolic composition, physiological state, genotype and embryogenic capacity in Pinus taeda (loblolly pine) somatic embryogenic cultures were explored using metabolomics. A stepwise modelling procedure, using the Bayesian information criterion, generated a 47 metabolite predictive model that could explain culture productivity. The model performed extremely well in cross-validation, achieving a correlation coefficient of 0.98 between actual and predicted mature embryo production. The metabolic composition and structure of the model implied that variation in culture regenerative capacity was closely linked to the physiological transition of cultures from the proliferation phase to the maturation phase of development. The propensity of cultures to advance into this transition appears to relate to nutrient uptake and allocation in vivo, and to be associated with the tolerance and response of cultures to stress, during the proliferation phase. [source]


A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources

PLANT CELL & ENVIRONMENT, Issue 3 2008
B. J. HAWKINS
ABSTRACT Significant spatial variability in NH4+, NO3, and H+ net fluxes was measured in roots of young seedlings of Douglas-fir (Pseudotsuga menziesii) and lodgepole pine (Pinus contorta) with ion-selective microelectrodes. Seedlings were grown with NH4+, NO3,, NH4NO3 or no nitrogen (N), and were measured in solutions containing one or both N ions, or no N in a full factorial design. Net NO3, and NH4+ uptake and H+ efflux were greater in Douglas-fir than lodgepole pine and in roots not exposed to N in pretreatment. In general, the rates of net NH4+ uptake were the same in the presence or absence of NO3,, and vice versa. The highest NO3, influx occurred 0,30 mm from the root apex in Douglas-fir and 0,10 mm from the apex in lodgepole pine. Net NH4+ flux was zero or negative (efflux) at Douglas-fir root tips, and the highest NH4+ influx occurred 5,20 mm from the root tip. Lodgepole pine had some NH4+ influx at the root tips, and the maximum net uptake 5 mm from the root tip. Net H+ efflux was greatest in the first 10 mm of roots of both species. This study demonstrates that nutrient uptake by conifer roots can vary significantly across different regions of the root, and indicates that ion flux profiles along the roots may be influenced by rates of root growth and maturation. [source]