Home About us Contact | |||
Nutrient Effects (nutrient + effects)
Selected AbstractsShort-term responses by the German cockroach, Blattella germanica, to insecticidal baits: behavioural observationsENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2002Stephen A. Jones Abstract Toxicants may cause insects to avoid a bait, and yet bait efficacy is dependent upon insects ingesting it in adequate quantities. Amounts ingested are, in turn, determined by meal frequency, meal durations and ingestion rate within meals, but to date no report has been made of these variables for domestic cockroaches. We report an experiment in which sixth instar German cockroach, Blattella germanica, nymphs were initially able to self-select their protein and carbohydrate intake independently, then daily at the start of the scotophase some insects had their choice of foods replaced by a single treatment food, which varied through the presence or absence of protein, carbohydrate, and insecticide. Insect behaviour was recorded for the following 5 h, and the data were subsequently subjected to bout analysis in order to identify discrete meals. The age of insects in days on first exposure to a treatment food (,age') and the amount of food eaten in the observation period were both recorded and included in the analysis. Amounts eaten were affected by insect age and food nutrient content, but not by the presence of insecticide. Toxicant effects were, however, seen on average meal duration and meal frequency, in interactions with age and food nutrient effects. These results suggest ways in which direct observations of behaviours may lead to improved bait design. [source] Repeated grazing of a salt marsh grass by moulting greylag geese Anser anser, does sequential harvesting optimise biomass or protein gain?JOURNAL OF AVIAN BIOLOGY, Issue 1 2003Anthony D. Fox The effects of simulated goose grazing on common saltmarsh-grass Puccinellia maritima plants were tested on a Danish salt marsh during the flightless moulting period of greylag geese Anser anser (3,21 June 1998). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to removal of youngest lamina at 3-, 6-, 9- and 18-day intervals during this period. Average biomass and protein accumulation between harvests was highest at defoliation intervals of 9 days or more. Field observations from two separate study areas demonstrated geese returned to regraze the Puccinellia sward after 6,8 days and oesophageal contents from feeding geese showed selection for lamina lengths consistent with the results of clipping every 6 days. Geese therefore regrazed Puccinellia patches at shorter intervals than expected were they to maximise their intake of biomass or protein at each visit. However, total cumulative lamina elongation, equivalent to the long term gain during the entire moult period, showed no significant difference between the three most intensive defoliation treatments, which were significantly greater than those of plants defoliated at 18 day intervals. Highest overall lamina protein levels were maintained at 6- and 9-day defoliation intervals. This suggests geese regrazed Puccinellia patches at a rate that maximised their number of harvests during the flightless period, but maintained highest protein levels and overall biomass in the sward. This suggests, in line with earlier studies, that moulting greylag geese combine dietary selection, reduced nitrogen excretion and regrazing patterns to meet protein demands during regrowth of flight feathers. [source] Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni)AGING CELL, Issue 5 2009Benjamin G. Fanson Summary Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS. [source] Top-down and bottom-up control in an eelgrass,epiphyte systemOIKOS, Issue 5 2008Sybill Jaschinski Nutrient supply and the presence of grazers can control primary producers in aquatic ecosystems, but the relative importance of bottom-up and top-down effects remains inconclusive. We conducted a mesocosm experiment and a field study to investigate the independent and interactive effects of nutrient enrichment and grazing on primary producers in an eelgrass bed Zostera marina. Nutrient treatments consisted of ambient or enriched (2× and 4× ambient) concentrations of inorganic nitrogen and phosphate. Grazer treatments consisted of presence or absence of field densities of the common isopod Idotea baltica. We found strong and interacting effects of nutrients and grazing on epiphytes. Epiphyte biomass and productivity were enhanced by nutrient enrichment and decreased in the presence of grazers. The absolute amount of epiphyte biomass consumed by grazers increased under high nutrient supply, and thus, nutrient effects were stronger in the absence of grazing. The effects of grazers and fertilisation on epiphyte composition were antagonistic: chain-forming diatoms and filamentous algae profited from nutrient enrichment, but their proportions were reduced by grazing. Eelgrass growth was positively affected by grazing and by nutrient enrichment at moderate nutrient concentrations. High nutrient supply reduced eelgrass productivity compared to moderate nutrient conditions. The monthly measured field data showed a nitrogen limitation for epiphytes and eelgrass in summer, which may explain the positive effect of nutrient enrichment on both primary producers. Generally, the field data suggested the possibility of seasonally varying importance of bottom-up and top-down control on primary producers in this eelgrass system. [source] Dominance by a canopy forming seaweed modifies resource and consumer control of bloom-forming macroalgaeOIKOS, Issue 7 2007Britas Klemens Eriksson Degradation of ecological resources by large-scale disturbances highlights the need to demonstrate biological properties that increase resistance to change and promote the resilience of ecosystem regimes. Coastal eutrophication is a global-scale disturbance that drives ecosystem change by increasing primary production and favouring ephemeral and bloom-forming life-forms. Recent synthesis indicates that consumption processes increase the resistance of coastal communities to nutrient loading by controlling the responses of ephemeral macroalgae. Here we suggest a similar ecological function for canopy cover by demonstrating that the presence of a canopy species modifies both resource and consumer control of bloom-forming algae associated with nutrient enrichment. We tested effects of canopy presence on the interaction between consumer and resource control, by field-manipulations of a dominant canopy forming seaweed (Fucus vesiculosus), grazer presence (dominated by the gastropod Littorina littorea) and nutrient enrichment (common agricultural NPK fertilizer). Canopy cover and grazers jointly controlled strong increases of ephemeral bloom-forming algae (dominated by Ulva spp) from nutrient enrichment; nutrients increased ephemeral recruitment almost 10-fold, but only in the absence of both grazers and canopy cover. Recruitment success of the canopy-forming seaweed itself decreased additively with 56.1, 71.3 and 50.5% from independent effects of canopy cover, grazers and nutrient enrichment, respectively. A meta-analysis of nine nutrient enrichment experiments including seaweed, seagrass and stream communities, showed that in the presence of canopies average nutrient effects were reduced by more than 90% compared to without canopies. This corroborates the generality of our finding that dominating canopy species are important for aquatic ecosystems by increasing community resistance to the propagation of nutrient effects. [source] Effect of wood ash treatment on improving the fermentability of wood hydrolysateBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2003Hisashi Miyafuji Abstract Softwood hydrolysates were overlimed with wood ash to improve the fermentability of hydrolysates. It could be demonstrated in fermentation tests that wood ash treatment increases fermentability compared to the hydrolysates untreated and treated with alkaline compounds such as Ca(OH)2, NaOH, and KOH, which are commonly used for overliming. The enhanced fermentability of the hydrolysate treated with wood ash is due to the reduction of the inhibitors of the fermentation such as furan and phenolic compounds and to nutrient effects of some inorganic components from the wood ash on the fermentation. © 2003 Wiley Periodicals. Biotechnol Bioeng 84: 390,393, 2003. [source] |