Home About us Contact | |||
Numerous Potential Applications (numerous + potential_application)
Selected AbstractsSynthesis of Mesoporous Organosilicate Films in Supercritical Carbon Dioxide,ADVANCED MATERIALS, Issue 2 2006A. Pai Uniform, well-ordered, mesoporous organosilicate films (see Figure) have been synthesized by efficient direct and post-synthesis functionalization methods in supercritical carbon dioxide and characterized using spectroscopic, microscopy, and diffraction techniques. These materials have numerous potential applications, including in sensors, low- k dielectrics, separations, and catalysis. [source] A novel method for enzyme designJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009Xiaolei Zhu Abstract Rational design of enzymes is a stringent test of our understanding of protein structure and function relationship, which also has numerous potential applications. We present a novel method for enzyme design that can find good candidate protein scaffolds in a protein-ligand database based on vector matching of key residues. Residues in the vicinity of the active site were also compared according to a similarity score between the scaffold protein and the target enzyme. Suitable scaffold proteins were selected, and the side chains of residues around the active sites were rebuilt using a previously developed side-chain packing program. Triose phosphate isomerase (TIM) was used as a validation test for enzyme design. Selected scaffold proteins were found to accommodate the enzyme active sites and successfully form a good transition state complex. This method overcomes the limitations of the current enzyme design methods that use limited number of protein scaffold and based on the position of ligands. As there are a large number of protein scaffolds available in the Protein Data Band, this method should be widely applicable for various types of enzyme design. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source] Blood velocity assessment using 3D bright-blood time-resolved magnetic resonance angiographyMAGNETIC RESONANCE IN MEDICINE, Issue 3 2006Sylvain Miraux Abstract Blood velocity is a functional parameter that is not easily assessed noninvasively, especially in small animals. A new noninvasive method that uses magnetic resonance angiography (MRA) to measure blood flows is proposed. This method is based on the time-of-flight (TOF) phenomenon. By initially suppressing the signal from the stationary spins in the area of interest, it is possible to sequentially visualize only the signal from the moving spins entering a given volume. With this method, 3D cine images of the blood flow can be generated by positive contrast, with unparalleled spatial (<200 ,m) and temporal resolutions (<10 ms/image). As a result, it is possible to measure flow in sinuous paths. The present method was applied in vivo to measure the blood velocity in mouse carotid arteries. Because of its robustness and simplicity of implementation, this method has numerous potential applications for fundamental studies in small animal models. Magn Reson Med, 2006. © 2006 Wiley-Liss, Inc. [source] From carbon nanotube coatings to high-performance polymer nanocompositesPOLYMER INTERNATIONAL, Issue 4 2008Stéphane Bredeau Abstract Since their discovery at the beginning of the 1990s, carbon nanotubes (CNTs) have been the focus of considerable research by both academia and industry due to their remarkable and unique electronic and mechanical properties. Among numerous potential applications of CNTs, their use as reinforcing materials for polymers has recently received considerable attention since their exceptional mechanical properties, combined with their low density, offer tremendous opportunities for the development of fundamentally new material systems. However, the key challenge remains to reach a high level of nanoparticle dissociation (i.e. to break down the cohesion of aggregated CNTs) as well as a fine dispersion upon melt blending within the selected matrices. Therefore, this contribution aims at reviewing the exceptional efficiency of CNT coating by a thin layer of polymer as obtained by an in situ polymerization process catalysed directly from the nanofiller surface, known as the ,polymerization-filling technique'. This process allows for complete destructuring of the native filler aggregates. Interestingly enough, such surface-coated carbon nanotubes can be added as ,masterbatch' in commercial polymeric matrices leading to the production of polymer nanocomposites displaying much better thermomechanical, flame retardant and electrical conductive properties even at very low filler loading. Copyright © 2007 Society of Chemical Industry [source] Amphoteric liposomes enable systemic antigen-presenting cell,directed delivery of CD40 antisense and are therapeutically effective in experimental arthritisARTHRITIS & RHEUMATISM, Issue 4 2009Evangelos Andreakos Objective Mediation of RNA interference by oligonucleotides constitutes a powerful approach for the silencing of genes involved in the pathogenesis of inflammatory disease, but in vivo application of this technique requires effective delivery to immune cells and/or sites of inflammation. The aim of the present study was to develop a new carrier system to mediate systemic administration of oligonucleotides to rheumatoid arthritis (RA) joints, and to develop an antisense oligonucleotide (ASO),based approach to interfere with CD40,CD154 interactions in an experimental model of RA. Methods A novel liposomal carrier with amphoteric properties, termed Nov038, was developed and assessed for its ability to systemically deliver an ASO directed against CD40 (CD40-ASO). Male DBA/1 mice with collagen-induced arthritis were treated with Nov038-encapsulated CD40-ASO, and the effects of treatment on various parameters of disease activity, including clinical score, paw swelling, lymph node responses, and inflammatory cytokine production in the joints, were assessed. Results Nov038 was well tolerated, devoid of immune-stimulatory effects, and efficacious in mediating systemic oligonucleotide delivery to sites of inflammation. In mice with collagen-induced arthritis, Nov038 enabled the therapeutic administration of CD40-ASO and improved established disease, while unassisted CD40-ASO was ineffective, and anti,tumor necrosis factor , (anti-TNF,) treatment was less effective in this model. Nov038/CD40-ASO efficacy was attributed to its tropism for monocyte/macrophages and myeloid dendritic cells (DCs), resulting in rapid down-regulation of CD40, inhibition of DC antigen presentation, and reduction in collagen-specific T cell responses, as well as decreased levels of TNF,, interleukin-6 (IL-6), and IL-17 in arthritic joints. Conclusion Amphoteric liposomes represent a novel carrier concept for systemic and antigen-presenting cell,targeted oligonucleotide delivery with clinical applicability and numerous potential applications, including target validation in vivo and inflammatory disease therapeutics. Moreover, Nov038/CD40-ASO constitutes a potent alternative to monoclonal antibody,based approaches for interfering with CD40,CD40L interactions. [source] |