Home About us Contact | |||
Numerical Investigation (numerical + investigation)
Selected AbstractsNumerical Investigation of Turbulent Flow around a Rotating Stepped Cylinder for Corrosion StudyTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2003Kyung-Soo Yang Abstract Direct numerical simulation has been carried out for turbulent flow set up by a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction. This flow geometry creates a qualitatively similar flow pattern as observed near a sudden pipe expansion or a plane backward-facing step, characterized by flow separation and reattachment. A region of intense turbulence intensity and high wall-shear-stress fluctuations is formed in the recirculating region downstream of the step, where high mass-transfer capacity was also experimentally observed. Since corrosion is frequently mass-transfer controlled, our findings put forward this apparatus as a useful tool for future corrosion research. On a effectué une simulation numérique directe de l'écoulement turbulent créé par un cylindre rotatif ayant deux contractions axisymétriques dans la direction circonférentielle. Cette géométrie crée un profil d'écoulement qualitativement similaire à celui qu'on observe près d'une expansion de conduite soudaine ou d'une contraction planaire, caractérisés par la séparation et le ré-attachement de l'écoulement. Une région d'intense turbulence et de fortes fluctuations de contraintes de cisaillement pariétal se forment dans la région en recirculation en aval de la contraction, où une grande capacité de transfert de matière a également été observée expérimentalement. Étant donné que la corrosion dépend souvent du transfert de matière, nos résultats font la promotion de cet appareillage en tant qu'outil utile pour la recherche future sur la corrosion. [source] Experimentelle und numerische Untersuchungen zum Tragverhalten von Stahlbetondecken mit kugelförmigen HohlkörpernBETON- UND STAHLBETONBAU, Issue 6 2010Marcin Abramski Dr.-Ing. Abstract Massive Flachdecken erweisen sich in Hoch- und Industriebau häufig als insgesamt überlegenes Deckensystem. Die hohe Eigenlast dieser Decken kann ihren Anwendungsbereich jedoch einschränken. Eine sinnvolle Abhilfe schafft dann die Integration von Hohlkörpern in der neutralen Zone, weil hierdurch eine spürbare Gewichtsreduktion eintritt. Neben der Eigenlast wird auch der Verbrauch der unter ökologischen Gesichtspunkten wesentlichen Ressourcen Betonstahl und Zement deutlich verringert. Die Hohlräume beeinflussen vor allem die Querkrafttragfähigkeit solcher Decken. Vier Versuchsserien, die mit kugelförmigen Hohlkörperdecken des Systems "cobiax" durchgeführt wurden, werden in diesem Beitrag beschrieben. Aus den Versuchen wird ein Abminderungsfaktor zur Beschreibung des Querkrafttragverhaltens abgeleitet, der auch in die kürzlich erteilte allgemeine bauaufsichtliche Zulassung des Deckensystems eingegangen ist. Die Nachrechnung der Versuche mit der Finite-Elemente-Methode zeigt eine gute Übereinstimmung von Numerik und Experiment, so dass in der Weiterentwicklung Parameterstudien auf dieser Grundlage zur Ergänzung von Versuchen hilfreich sein werden. Experimental and Numerical Investigation of the Bearing Behaviour of Hollow Core Slabs Massive flat slabs have proven to be the most appropriate ceiling system for structural and industrial engineering. However the high dead load of these slabs might reduce their field of application. This problem can be solved by void formers that are placed in the neutral zone. These block-outs cause a noticeable reduction of weight. Furthermore, the masses of ecologically important resources like reinforcement steel and cement can be reduced as well. The shear bearing capacity is significantly influenced by these block-outs. This article describes four test series with spherical void former floors of the system "cobiax". A reduction factor for the shear bearing capacity is derived from these tests. That factor was also introduced in the technical approval for this slab system which has been issued recently. A comparison to a calculation with the finite element method shows that the numerical results and the results of the tests are quite similar. In future research, parameter studies based on the finite element method might be helpful additional to further tests. [source] Experimental and Numerical Investigations for Cyclic Thermal ShocksPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2005Franz-Barthold Gockel Thermal shock is an extreme form of thermo-mechanical loading. Detailed investigations of thermal shock and live time analysis close to reality are necessary in industrial engineering in order to get a good prediction of life expectancy of high quality and safety relevant machine components. The first part of this paper concentrates on experimental investigations of macroscopic quantities like temperature, deformation, damage and crack propagation. Additionally first results on parameter studies for finite element thermal shock simulations on the thermal-mechanical problem are summarized. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Numerical Investigations on the Plastic Memory Effect of PTFE CompoundsPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Thomas Kletschkowski Dipl.-Ing. To describe the nonlinear material behaviour of thermoplastic materials via the example of Polytetrafluorethylene (PTFE), a viscoplastic material model of overstress type is proposed. The approach is motivated by a rheological model, consisting of a rate-independent elastoplastic element with an endochronic flow rule and a nonlinear elastic element in parallel connection with a nonlinear Maxwell model. For the generalization to three dimensions, the theory of finite viscoplasticity based on material isomorphisms is applied. To describe the non-isothermal plastic memory effect, thermally induced plastic strains and a scalar back stress (inside the equilibrium branch) are taken into account. [source] Longitudinal Dust Lattice Shock Wave in a Strongly Coupled Complex Dusty PlasmaCONTRIBUTIONS TO PLASMA PHYSICS, Issue 8 2008S. Ghosh Abstract The effect of hydrodynamical damping that arises due to the irreversible processes within the system have been studied on 1D nonlinear longitudinal dust lattice wave (LDLW) in homogeneous strongly coupled complex (dusty) plasma. Analytical investigation shows that the nonlinear wave is governed by Korteweg-de Vries Burgers' equation. This hydrodynamical damping induced dissipative effect is responsible for the Burgers' term that causes the generation of shock wave in dusty plasma crystal. Numerical investigation on the basis of the glow-discharge plasma parameters reveal that LDLW exhibits both oscillatory and monotonic shock. The shock is compressive in nature and its strength decreases (increases) with the increase of the shielding parameter , (characteristic length L). The effects of dust-neutral collision are also discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Numerical investigation of heat transport and fluid flow during the seeding process of oxide Czochralski crystal growth Part 1: non-rotating seedCRYSTAL RESEARCH AND TECHNOLOGY, Issue 6 2007M. H. Tavakoli Abstract For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed-melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non-rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (,seed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed-melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Numerical investigation on J -integral testing of heterogeneous fracture toughness testing specimens: Part I , weld metal cracksFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 8 2003Y.-J. KIM ABSTRACT Based on extensive two-dimensional (2D) finite element (FE) analyses, the present work provides the plastic , factor solutions for fracture toughness J -integral testing of heterogeneous specimens with weldments. Solutions cover practically interesting ranges of strength mismatch and relative weld width, and are given for three typical geometries for toughness testing: a middle cracked tension (M(T)) specimen, single edge cracked bend (SE(B)) specimen and (C(T)) specimen. For mismatched M(T) specimens, both plane strain and plane stress conditions are considered, whereas for SE(B) and C(T) specimens, only the plane strain condition is considered. For all cases, only deep cracks are considered, and an idealized butt weld configuration is considered, where the weld metal strip has a rectangular cross section. Based on the present solutions for the strength mismatch effect on plastic , factors, a window is provided, within which the homogeneous J estimation procedure can be used for weldment toughness testing. The effect of the weld groove configuration on the plastic , factor is briefly discussed, concluding the need for further systematic analysis to provide guidance to practical toughness testing. [source] Numerical investigation of the effectiveness of a bored pile wall for the minimisation of settlement resulting from tunnel driving.GEOMECHANICS AND TUNNELLING, Issue 6 2009Numerische Untersuchung der Wirkungsweise einer Bohrpfahlwand zur Minimierung der Setzungen infolge Tunnel Soil mechanics; Innovative procedures; Bodenmechanik; Neue Verfahren Abstract Bored pile walls can be constructed between buildings and tunnel alignments to protect sensitive buildings from settlement resulting from tunnelling. The aim of the research work presented here was to evaluate the effectiveness of such a bored pile wall with FE calculations and identify influential parameters. Two methods of predicting settlement were investigated with the programme ABAQUS: The GAP method, where the deformations of the tunnel contour are prescribed, and the stress reduction method, with which the support pressure at the tunnel contour is reduced. The ground is modelled as linear-elastic, ideal-plastic with a Mohr-Coulomb failure criterion as well as with a hypoplastic constitutive law. The contact surface between wall and ground was modelled with complete bonding as well as with a contact law with friction. The simulation results with the stress reduction method and the hypoplastic material model show the best results qualitatively. The predict settlements agree well with empirical methods and centrifuge tests from the literature. The simulations show that the effectiveness of the wall is significantly influenced by the contact properties in the boundary surface. It achieves the best protection effect when frictionless. Zur Abschirmung sensibler Gebäude vor Setzungen infolge Tunnelvortrieb können Bohrpfahlwände zwischen Gebäude und Tunneltrasse eingesetzt werden. Ziel der hier präsentierten Forschungsarbeit war es, die Wirksamkeit einer solchen Bohrpfahlwand mit FE-Berechnungen nachzuvollziehen und Einflussparameter zu identifizieren. Mit dem Programm ABAQUS wurden zwei Möglichkeiten zur Setzungsprognose untersucht: Die GAPMethode, bei der die Verschiebungen der Tunnelkontur vorgegeben werden, und die Spannungsreduktions-Methode, bei welcher der Stützdruck an der Tunnelkontur reduziert wird. Der Boden wurde als linear-elastisch, ideal-plastisch mit Grenzbedingung nach Mohr-Coulomb sowie mit einem hypoplastischen Stoffgesetz modelliert. Die Kontaktfläche zwischen Wand und Boden wurde sowohl mit vollständigem Verbund als auch mit einem Kontaktgesetz mit Reibung modelliert. Die Simulationsergebnisse mit der Spannungsreduktions-Methode und dem hypoplastischen Materialmodell zeigen die qualitativ besten Ergebnisse. Die Setzungsprognosen stimmen gut mit empirischen Ansätzen und Zentrifugenversuchen aus der Literatur überein. Die Simulationen veranschaulichen, dass die Wirksamkeit der Wand maßgeblich von den Kontakteigenschaften in der Grenzfläche beeinflusst wird. Die größte Abschirmwirkung erzielt sie bei Reibungsfreiheit. [source] Numerical investigation of the reliability of a posteriori error estimation for advection,diffusion equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 9 2008A. H. ElSheikh Abstract A numerical investigation of the reliability of a posteriori error estimation for advection,diffusion equations is presented. The estimator used is based on the solution of local problems subjected to Neumann boundary conditions. The estimated errors are calculated in a weighted energy norm, a stability norm and an approximate fractional order norm in order to study the effect of the error norm on both the effectivity index of the estimated errors and the mesh adaptivity process. The reported numerical results are in general better than what is available in the literature. The results reveal that the reliability of the estimated errors depends on the relation between the mesh size and the size of local features in the solution. The stability norm is found to have some advantages over the weighted energy norm in terms of producing effectivity indices closer to the optimal unit value, especially for problems with internal sharp layers. Meshes adapted by the element residual method measured in the stability norm conform to the sharp layers and are shown to be less dependent on the wind direction. Copyright © 2007 John Wiley & Sons, Ltd. [source] Numerical investigation of the effect of inlet condition on self-excited oscillation of wet steam flow in a supersonic turbine cascade,INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2009Wu Xiaoming Abstract Self-excited oscillation can be induced due to the interaction between condensation process and local transonic condition in condensing flow, which is an important problem in wet steam turbine. With an Eulerian/Eulerian numerical model, the self-excited oscillation of wet steam flow is investigated in a supersonic turbine cascade. Owing to supercritical heat addition to the subsonic flow in the convergent part of the cascade, the oscillation frequency decreases with increased inlet supercooling. Mass flow rate increases in the oscillating flow due to the greater supersaturation in condensation process, while the increase will be suppressed with the flow oscillation. Higher inlet supercooling leads to the fact that the condensation process moves upstream and the loss increases. Moreover, some predictions of oscillation effects on outflow angle and aerodynamic force are also presented. Finally, heterogeneous condensations with inlet wetness and periodic inlet conditions, as a result of the interference between stator and rotor, are discussed. Copyright © 2008 John Wiley & Sons, Ltd. [source] Numerical investigation of the first instabilities in the differentially heated 8:1 cavityINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 8 2002F. Auteri Abstract We present a new Galerkin,Legendre spectral projection solver for the simulation of natural convection in a differentially heated cavity. The projection method is applied to the study of the first non-stationary instabilities of the flow in a 8:1 cavity. Statistics of the periodic solution are reported for a Rayleigh number of 3.4×105. Moreover, we investigate the location and properties of the first Hopf bifurcation and of the three successive bifurcations. The results confirm the previous finding in the range of Rayleigh numbers investigated that the flow instabilities originate in the boundary layer on the vertical walls. A peculiar phenomenon of symmetry breaking and symmetry restoring is observed portraying the first steps of the transition to chaos for this flow. Copyright © 2002 John Wiley & Sons, Ltd. [source] Numerical investigation of gas mixing in gas-solid fluidized bedsAICHE JOURNAL, Issue 9 2010Tingwen Li Abstract Gas mixing in a tall narrow fluidized bed operated in the slugging fluidization regime is simulated with the aid of computational fluid dynamics. In the first part, a parametric study is conducted to investigate the influence of various parameters on the gas mixing. Among the parameters studied, the specularity coefficient for the partial-slip solid-phase wall boundary condition had the most significant effect on gas mixing. It was found that the solid-phase wall boundary condition needs to be specified with great care when gas mixing is modeled, with free slip, partial slip and no-slip wall boundary conditions giving substantial differences in the extent of gas back mixing. Axial and radial tracer concentration profiles for different operating conditions are generally in good agreement with experimental data from the literature. Detailed analyses of tracer back mixing are carried out in the second part. Two parameters, the tracer backflow fraction and overall gas backflow fraction, in addition to axial profiles of cross-sectional averaged tracer concentrations, are evaluated for different flow conditions. Qualitative trends are consistent with reported experimental findings. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Numerical investigation of the influence of material properties and adhesive layer thickness on the heating efficiency of microwave curing of an adhesive-bonded jointPOLYMER ENGINEERING & SCIENCE, Issue 8 2004H. W. So In the process of microwave curing of an adhesive-bonded joint, both the adhesive layer and the adherends affected the heating efficiency of the joint. As an extension of previous studies, the influences of changing the properties of the components of the joint on the heating efficiency were predicted by simulations that were based on the numerical model developed previously. The influence of adhesive thickness was also studied. The properties that directly affected power dissipation and heat loss of the adhesive layer were found to be important to the heating efficiency of the process. The heating rate was also sensitive to the thickness of the adhesive layer. Polym. Eng. Sci. 44:1414,1418, 2004. © 2004 Society of Plastics Engineers. [source] Numerical investigation of continuous processes for catalytic hydrogenation of nitrile butadiene rubberPOLYMER ENGINEERING & SCIENCE, Issue 5 2002Qinmin Pan Dynamic behavior of continuous processes was numerically investigated for the catalytic hydrogenation of nitrile butadiene rubber, based on developed models, which took into account the coupling between kinetics and mass transfer. The evolution of hydrogenation reaction trajectories in both cases were analyzed. It is proposed that the coupling behavior between the catalytic hydrogenation and mass transfer was completely determined by the ability of the catalyst in activating hydrogen, carbon-carbon double bond loading level and the relative capacity of reaction to mass transfer as well as the residence time in the reactor. Four dimensionless parameters were derived to characterize these aspects. The effects of operation conditions on the hydrogenation processes were investigated. The application of the ideal flow models to non-ideal flows was in addition discussed. It is suggested that the optimal reactor for such a hydrogenation system would be a plug flow reactor with an instantaneous well-mixing component in the inlet of it, and a reasonable approach to the proposed optimal reactor should be with the flow behavior of at least three continuous stirred tank reactors in series. Further research directions are suggested. [source] Numerical modeling and investigation of liquid phase epitaxy of Hg1,xCdxTe infrared detectorsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2005K. Lin Abstract Numerical investigations have been performed for modeling the global temperature field of an industrial liquid phase epitaxy (LPE) facility and to estimate the temperature fluctuations in a Te-rich solution during the LPE growth. The numerical results agreed well with experimental data and therefore provide reliable reference points for experimenters for further improvements of the growth conditions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Multiple-relaxation-time lattice Boltzmann computation of channel flow past a square cylinder with an upstream control bi-partitionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010M. A. Moussaoui Abstract The present paper deals with the application of the multiple-relaxation-time lattice Boltzmann equation (MRT-LBE) for the simulation of a channel flow with a bi-partition located upstream of a square cylinder in order to control the flow. Numerical investigations have been carried out for different heights and positions of the bi-partition at Reynolds number of 250. Key computational issues involved are the computation of fluid forces acting on the square cylinder, the vortex shedding frequency and the impact of such bluff body on the flow pattern. A particular attention is paid to drag and lift coefficients on the square cylinder. The predicted results from MRT-LBE simulations show that in most cases, the interaction was beneficial insofar as the drag of the square block was lower with the bi-partition than without it. Fluctuating side forces due to vortex shedding from the main body were also reduced for most bi-partition positions. Copyright © 2009 John Wiley & Sons, Ltd. [source] Numerical investigations on autogenous shrinkage of cement paste and mortarPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2009Thorsten Leusmann Autogenous shrinkage of cement paste and concrete is defined as the macroscopic length change occurring with no moisture transferred to the exterior surrounding environment. It is a result of chemical shrinkage affiliated with the hydration of cement particles and the ongoing process of self-desiccation. The process of self-desiccation can be modeled starting from the formation of the capillary pore space during hydration in the cement paste. In this proposal a working model will be introduced explaining the difficulties to obtain the autogenous shrinkage strains directly from a simulated or measured microstructure of cement paste. In a second step the autogenous shrinkage of a hardening cement mortar was described on a mesoscopic level. It based on measurements on cement paste. The mortar simply consists of cement paste and a defined fraction of spherical aggregates with a known modulus of elasticity. Furthermore the influence of the interfacial transition zone (ITZ) is studied in numerical simulations. The results of these finite-element-calculations are introduced and compared with testing results of the autogenous shrinkage of hardening mortar samples. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Vibration of a porouse-cellular circular platePROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006Ewa Magnucka-Blandzi The subject of investigation is a circular porous-cellular plate under uniform pressure. Mechanical properties of the isotropic porous cellular metal vary accross the thickness of the plate. Middle plane of the plate is its symmetry plane. Fields of diseplacements and stresses with respect the nonlinear hypothesis are described. Basing on Hamilton principle three motion equations of the plate are formulated. These equations are approximately solved. The vibration problem is reduced to the second-order differential equation. Numerical investigations are realised for family of plates. Natural frequencies are determined. The obtained results are shown in Figures. To the end of the investigation comparition analyses with respect to homogeneous plates is presented. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Distributional properties of estimated capability indices based on subsamplesQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 2 2003Kerstin Vännman Abstract Under the assumption of normality, the distribution of estimators of a class of capability indices, containing the indices , , and , is derived when the process parameters are estimated from subsamples. The process mean is estimated using the grand average and the process variance is estimated using the pooled variance from subsamples collected over time for an in-control process. The derived theory is then applied to study the use of hypothesis testing to assess process capability. Numerical investigations are made to explore the effect of the size and number of subsamples on the efficiency of the hypothesis test for some indices in the studied class. The results for and indicate that, even when the total number of sampled observations remains constant, the power of the test decreases as the subsample size decreases. It is shown how the power of the test is dependent not only on the subsample size and the number of subsamples, but also on the relative location of the process mean from the target value. As part of this investigation, a simple form of the cumulative distribution function for the non-central -distribution is also provided. Copyright © 2003 John Wiley & Sons, Ltd. [source] Seismic response analysis of multidrum classical columnsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2005Dimitrios Konstantinidis Abstract This paper presents a numerical investigation on the seismic response of multidrum classical columns. The motivation for this study originates from the need to understand: (a) the level of ground shaking that classical multidrum columns can survive, and (b) the possible advantages or disadvantages of retrofitting multidrum columns with metallic shear links that replace the wooden poles that were installed in ancient times. The numerical study presented in this paper is conducted with the commercially available software Working Model 2DÔ, which can capture with fidelity the sliding, rocking, and slide-rocking response of rigid-body assemblies. This paper validates the software Working Model by comparing selected computed responses with scarce analytical solutions and the results from in-house numerical codes initially developed at the University of California, Berkeley, to study the seismic response of electrical transformers and heavy laboratory equipment. The study reveals that relative sliding between drums happens even when the g -value of the ground acceleration is less than the coefficient of friction, µ, of the sliding interfaces and concludes that: (a) typical multidrum classical columns can survive the ground shaking from strong ground motions recorded near the causative faults of earthquakes with magnitudes Mw=6.0,7.4; (b) in most cases multidrum classical columns free to dislocate at the drum interfaces exhibit more controlled seismic response than the monolithic columns with same size and slenderness; (c) the shear strength of the wooden poles has a marginal effect on the sliding response of the drums; and (d) stiff metallic shear links in-between column drums may have an undesirable role on the seismic stability of classical columns and should be avoided. Copyright © 2005 John Wiley & Sons, Ltd. [source] Comparative response analysis of conventional and innovative seismic protection strategiesEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2002S. Bruno Abstract The paper presents a numerical investigation aimed at evaluating the improvements achievable through devices for passive seismic protection of buildings based on the use of shape memory alloys (SMA) in place of conventional steel or rubber devices. To get some generality in the results, different resisting reinforced concrete plane frames were analysed, either protected or not. ,New' and ,existing' buildings were considered depending on whether seismic provisions are adopted in the building design or not. Base isolation and energy dissipation were equally addressed for both conventional and innovative SMA-based devices. Fragility analyses were performed using specific damage measures to account for comparisons among different damage types; the results were then used to estimate quantitatively the effectiveness of the various protection systems. More specifically, the assessment involved a direct comparison of the damage reduction provided by each protection system with respect to the severe degradation experienced by the corresponding non-protected frame. Structural damage, non-structural damage and damage to contents were used on purpose and included in a subsequent phase of cost analysis to evaluate the expected gains also in terms of economic benefits and life loss prevention. The results indicate that base isolation, when applicable, provides higher degrees of safety than energy dissipation does; moreover, the use of SMA-based devices generally brings about better performances, also in consideration of the reduced functional and maintenance requirements. Copyright © 2002 John Wiley & Sons, Ltd. [source] High-resolution DNA separation in microcapillary electrophoresis chips utilizing double-L injection techniquesELECTROPHORESIS, Issue 21-22 2004Lung-Ming Fu Abstract An experimental and numerical investigation into the use of high-resolution injection techniques to separate DNA fragments within electrophoresis microchips is presented. The principal material transport mechanisms of electrokinetic migration, fluid flow, and diffusion are considered, and several variable-volume injection methods are discussed. A detailed analysis is provided of a double-L injection technique, which employs appropriate electrokinetic manipulations to reduce sample leakage within the microchip. The leakage effect in electroosmotic flow (EOF) is investigated using a sample composed of rhodamine B and Cy3 dye. Meanwhile, the effects of sample leakage in capillary electrophoresis (CE) separation are studied by considering the separation of 100-base pairs (bp) DNA ladders and HaeIII-digested ,X-174 DNA samples. The present experimental and simulation results indicate that the unique injection system employed in the current microfluidic chip has the ability to replicate the functions of both the conventional cross-channel and the shift-channel injection systems. Furthermore, applying the double-L injection method to these two injection systems is shown to reduce sample leakage significantly. The proposed microfluidic chip and double-L injection technique developed in this study have an exciting potential for use in high-resolution, high-throughput biochemical analysis applications and in many other applications throughout the micrototal analysis systems field. [source] Numerical simulation of heat transfer and fluid flow over two rotating circular cylinders at low Reynolds numberHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2010Nikolay Pavlovich Moshkin Abstract This paper presents a numerical investigation of the characteristics of two-dimensional heat transfer in a steady laminar flow around two rotating circular cylinders in a side-by-side arrangement. The simulation is validated by comparing our computational results for the large gap-spacing between cylinder surfaces with the available numerical and experimental data for a single cylinder. Numerical simulations were carried out for the Reynolds number range 10,Re ,40, for the Prandtl number range 0.7,Pr ,50, and for a variety of absolute rotational speeds (|,|,2.5) at different gap spacings. The study revealed that for the range of parameters considered the rate of heat transfer decreases with the increasing speed of rotation. An increase of the Prandtl number resulted in an increase in the average Nusselt number. The streamlines and isotherms are plotted for a numbers of cases to show the details of the velocity and thermal fields. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20293 [source] Some questions on dispersion of human exhaled droplets in ventilation room: answers from numerical investigationINDOOR AIR, Issue 2 2010C. Chen Abstract, This study employs a numerical model to investigate the dispersion characteristics of human exhaled droplets in ventilation rooms. The numerical model is validated by two different experiments prior to the application for the studied cases. Some typical questions on studying dispersion of human exhaled droplets indoors are reviewed and numerical study using the normalized evaporation time and normalized gravitational sedimentation time was performed to obtain the answers. It was found that modeling the transient process from a droplet to a droplet nucleus due to evaporation can be neglected when the normalized evaporation time is <0.051. When the normalized gravitational sedimentation time is <0.005, the influence of ventilation rate could be neglected. However, the influence of ventilation pattern and initial exhaled velocity on the exhaled droplets dispersion is dominant as the airflow decides the droplets dispersion significantly. Besides, the influence of temperature and relative humidity on the dispersion of droplets can be neglected for the droplet with initial diameter <200 ,m; while droplet nuclei size plays an important role only for the droplets with initial diameter within the range of 10 ,m,100 ,m. Practical Implications Dispersion of human exhaled droplets indoor is a key issue when evaluating human exposure to infectious droplets. Results from detailed numerical studies in this study reveal how the evaporation of droplets, ventilation rate, airflow pattern, initial exhaled velocity, and particle component decide the droplet dispersion indoor. The detailed analysis of these main influencing factors on droplet dispersion in ventilation rooms may help to guide (1) the selection of numerical approach, e.g., if the transient process from a droplet to a droplet nucleus due to evaporation should be incorporated to study droplet dispersion, and (2) the selection of ventilation system to minimize the spread of pathogen-laden droplets in an indoor environment. [source] Bond rolling resistance and its effect on yielding of bonded granulates by DEM analysesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2006M. J. Jiang Abstract A discrete element modelling of bonded granulates and investigation on the bond effect on their behaviour are very important to geomechanics. This paper presents a two-dimensional (2-D) discrete element theory for bonded granulates with bond rolling resistance and provides a numerical investigation into the effect of bond rolling resistance on the yielding of bonded granulates. The model consists of mechanical contact models and equations governing the motion of bonded particles. The key point of the theory is that the assumption in the original bond contact model previously proposed by the authors (55th CSCE-ASCE Conference, Hamilton, Ont., Canada, 2002; 313,320; J. Eng. Mech. (ASCE) 2005; 131(11):1209,1213) that bonded particles are in contact at discrete points, is here replaced by a more reliable assumption that bonded particles are in contact over a width. By making the idealization that the bond contact width is continuously distributed with the normal/tangential basic elements (BE) (each BE is composed of spring, dashpot, bond, slider or divider), we establish a bond rolling contact model together with bond normal/tangential contact models, and also relate the governing equations to local equilibrium. Only one physical parameter , needs to be introduced in the theory in comparison to the original bond discrete element model. The model has been implemented into a 2-D distinct element method code, NS2D. Using the NS2D, a total of 86 1-D, constant stress ratio, and biaxial compressions tests have been carried out on the bonded granular samples of different densities, bonding strengths and rolling resistances. The numerical results show that: (i) the new theory predicts a larger internal friction angle, a larger yielding stress, more brittle behaviour and larger final broken contact ratio than the original bond model; (ii) the yielding stress increases nonlinearly with the increasing value of ,, and (iii) the first-yield curve (initiation of bond breakage), which define a zone of none bond breakage and which shape and size are affected by the material density, is amplified by the bond rolling resistance in analogous to that predicted by the original bond model. Copyright © 2006 John Wiley & Sons, Ltd. [source] Numerical investigation of the reliability of a posteriori error estimation for advection,diffusion equationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 9 2008A. H. ElSheikh Abstract A numerical investigation of the reliability of a posteriori error estimation for advection,diffusion equations is presented. The estimator used is based on the solution of local problems subjected to Neumann boundary conditions. The estimated errors are calculated in a weighted energy norm, a stability norm and an approximate fractional order norm in order to study the effect of the error norm on both the effectivity index of the estimated errors and the mesh adaptivity process. The reported numerical results are in general better than what is available in the literature. The results reveal that the reliability of the estimated errors depends on the relation between the mesh size and the size of local features in the solution. The stability norm is found to have some advantages over the weighted energy norm in terms of producing effectivity indices closer to the optimal unit value, especially for problems with internal sharp layers. Meshes adapted by the element residual method measured in the stability norm conform to the sharp layers and are shown to be less dependent on the wind direction. Copyright © 2007 John Wiley & Sons, Ltd. [source] Laminar and turbulent flow calculations through a model human upper airway using unstructured meshesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 12 2007P. Nithiarasu Abstract In this paper, numerical investigation of airflow through a human upper airway is presented using an unstructured-based characteristic-based split (CBS) scheme. The CBS scheme used in the present study employs a fully explicit matrix-free solution procedure along with artificial compressibility. A one equation Spalrat,Allmaras (SA) turbulence model is employed to study low and moderate Reynolds number flows. A detailed discussion of the qualitative and quantitative results is presented. The results show a strong influence of the Reynolds number on the flow pattern and quantities of interest, pressure drop and wall shear stress. It is also apparent that SA model can be employed on unstructured meshes to predict the steady flow with good accuracy. Thus, the novelties of the present paper are: use of the unstructured mesh-based solution algorithm and the successful application of the SA model to a typical human upper airway. Copyright © 2006 John Wiley & Sons, Ltd. [source] Three-dimensional simulation of planar contraction viscoelastic flow by penalty finite element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 7 2010Yue Mu Abstract The planar contraction flow is a benchmark problem for the numerical investigation of viscoelastic flow. The mathematical model of three-dimensional viscoelastic fluids flow is established and the numerical simulation of its planar contraction flow is conducted by using the penalty finite element method with a differential Phan-Thien,Tanner constitutive model. The discrete elastic viscous split stress formulation in cooperating with the inconsistent streamline upwind scheme is employed to improve the computation stability. The distributions of velocity and stress obtained by simulation are compared with that of Quinzani's experimental results detected by laser,doppler velocimetry and flow-induced birefringence technologies. It shows that the numerical results agree well with the experimental results. The numerical methods proposed in the study can be well used to predict complex flow patterns of viscoelastic fluids. Copyright © 2009 John Wiley & Sons, Ltd. [source] A two-step Taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence anglesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2010Yan Bao Abstract An alternative characteristic-based scheme, the two-step Taylor-characteristic-based Galerkin method is developed based on the introduction of multi-step temporal Taylor series expansion up to second order along the characteristic of the momentum equation. Contrary to the classical characteristic-based split (CBS) method, the current characteristic-based method does not require splitting the momentum equation, and segregate the calculation of the pressure from that of the velocity by using the momentum,pressure Poisson equation method. Some benchmark problems are used to examine the effectiveness of the proposed algorithm and to compare with the original CBS method, and the results show that the proposed method has preferable accuracy with less numerical dissipation. We further applied the method to the numerical simulation of flow around equilateral triangular cylinder with different incidence angles in free stream. In this numerical investigation, the flow simulations are carried out in the low Reynolds number range. Instantaneous streamlines around the cylinder are used as a means to visualize the wake region behind, and they clearly show the flow pattern around the cylinder in time. The influence of incidence angle on flow characteristic parameters such as Strouhal number, Drag and Lift coefficients are discussed quantitatively. Copyright © 2009 John Wiley & Sons, Ltd. [source] Numerical simulation of a single bubble by compressible two-phase fluidsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2010Siegfried Müller Abstract The present work deals with the numerical investigation of a collapsing bubble in a liquid,gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non-conservative transport equations of the pressure law coefficients. The original first-order discretization is extended to higher order applying second-order ENO reconstruction to the primitive variables. The derivation of the non-conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale-based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2-D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser-induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd. [source] |