Home About us Contact | |||
Nucleotide Exchanges (nucleotide + exchanges)
Selected AbstractsVaricella-zoster virus isolates, but not the vaccine strain OKA, induce sensitivity to alpha-1 and beta-1 adrenergic stimulation of sensory neurones in cultureJOURNAL OF MEDICAL VIROLOGY, Issue S1 2003Michaela Schmidt Abstract The reactivation of varicella-zoster virus (VZV) from its persistent state in sensory neurones causes shingles and induces severe, long-lasting pain and hyperalgesia that often lead to postherpetic neuralgia. To investigate the VZV-induced neuropathic changes, we established conditions for the active infection of sensory neurones from rat dorsal root ganglia in vitro. After 2 days of culture, up to 50% of the cells expressed viral antigens of the immediate-early and late replication phase. The intracellular calcium ion concentration was monitored in individual cells by microfluorimetry. Whereas the calcium response to capsaicin was preserved, the VZV-infected neurones gained an unusual sensitivity to noradrenaline stimulation in contrast to non-infected cells. The adrenergic agonists phenylephrine and isoproterenol had a similar efficacy demonstrating that both ,1 - and ,1 -adrenoreceptors were involved. The sensitivity to adrenergic stimulation was observed after infection with different wildtype isolates, but not with the attenuated vaccine strain OKA. The lack of noradrenaline sensitivity of vaccine-infected neurones demands a structural comparison of wildtype and vaccine viruses with and without phenotype. A partial sequence evaluation (26 kb) of the European OKA vaccine strain surprisingly revealed a series of nucleotide exchanges in comparison to presumably identical OKA strains from other sources, although VZV is generally considered genetically stable. In summary, we report that the infection with wildtype VZV isolates, but not with the vaccine strain, induces noradrenaline sensitivity in sensory neurones, which correlates with clinical and experimental observations of adrenergic effects involved in VZV-induced neuralgia. J. Med. Virol. 70:S82,S89, 2003. © 2003 Wiley-Liss, Inc. [source] Genetic stability (in vivo) of the attenuated oral rabies virus vaccine SAD B19MICROBIOLOGY AND IMMUNOLOGY, Issue 1 2009Aline Beckert ABSTRACT The distribution of oral rabies vaccine baits containing replication-competent live viruses poses certain environmental safety risks; among others, the possibility of reversion to or an increase in virulence. Hence, the genetic stability of the complete genome of the most widely used oral rabies vaccine virus, SAD B19, was examined after four and 10 serial i.c. passages in foxes and mice, respectively. It was shown that the consensus strain of SAD B19 was extremely stable in vivo. After 10 consecutive passages in mice not a single mutation was observed. In foxes, seven single nucleotide exchanges were found between the first and fourth passage, of which only one resulted in an amino acid exchange at position 9240 of the L-gene. This mutation was not observed during the first three passages and, furthermore, it was shown that this mutation was not linked to enhanced virulence. [source] Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3,rep16THE PLANT JOURNAL, Issue 6 2009Sabine Kay Summary The Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) employs a type III secretion system to translocate effector proteins into plant cells where they modulate host signaling pathways to the pathogen's benefit. The effector protein AvrBs3 acts as a eukaryotic transcription factor and induces the expression of plant genes termed UPA (up-regulated by AvrBs3). Here, we describe 11 new UPA genes from bell pepper that are induced by AvrBs3 early after infection with Xcv. Sequence comparisons revealed the presence of a conserved AvrBs3-responsive element, the UPA box, in all UPA gene promoters analyzed. Analyses of UPA box mutant derivatives confirmed its importance for gene induction by AvrBs3. We show that DNA binding and gene activation were strictly correlated. DNase I footprint studies demonstrated that the UPA box corresponds to the center of the AvrBs3-protected DNA region. Type III delivery of AvrBs3 and mutant derivatives showed that some UPA genes are induced by the AvrBs3 deletion derivative AvrBs3,rep16, which lacks four repeats. We show that AvrBs3,rep16 recognizes a mutated UPA box with two nucleotide exchanges in positions that are not essential for binding and activation by AvrBs3. [source] Evaluation of RDS/Peripherin and ROM1 as candidate genes in generalised progressive retinal atrophy and exclusion of digenic inheritanceANIMAL GENETICS, Issue 3 2000M Runte Summary Generalised progressive retinal atrophy (gPRA) is a heterogeneous group of hereditary diseases causing degeneration of the retina in dogs and cats. As a combination of mutations in theRDS/Peripherin and the ROM1 genes leads to the phenotype of retinitis pigmentosa in man we first performed mutation analysis to screen these genes for disease causing mutations followed by the investigation of a digenic inheritance in dogs. We cloned the RDS/Peripherin gene and investigated the RDS/Peripherin and ROM1 genes for disease causing mutations in 13 gPRA-affected dog breeds including healthy animals, obligate gPRA carriers and gPRA-affected dogs. We screened for mutations using single strand conformation polymorphism (SSCP) analysis. Sequence analysis revealed several sequence variations. In the coding region of the RDS/Peripherin gene three nucleotide exchanges were identified (A277C; C316T; G1255A), one of which leads to an amino acid substitution (Ala339Thr). Various silent sequence variations were found in the coding region of the ROM1 gene (A536G, G1006A, T1018C, T1111C, C1150T, C1195T), as well as an amino acid substitution (G252T; Ala54Ser). By excluding the respective gene as a cause for gPRA several sequence variations in the intronic regions were investigated. None of these sequence variations cosegregated with autosomal recessively (ar) transmitted gPRA in 11 breeds. The candidate geneRDS/Peripherin obviously does not harbour the critical mutation causing the autosomal recessive form of gPRA because diseased individuals show heterozygous genotypes for sequence variations in the Miniature Poodle, Dachshund, Australian Cattle Dog, Cocker Spaniel, Chesapeake Bay Retriever, Entlebucher Sennenhund, Sloughi, Yorkshire Terrier, Tibet Mastiff, Tibet Terrier and Labrador Retriever breeds. In the following breeds the ROM1 gene was also excluded indirectly for gPRA: Miniature Poodle, Dachshund, Australian Cattle Dog, Sloughi, Collie, Tibet Terrier, Labrador Retriever and Saarloos/Wolfhound. Digenic inheritance for gPRA is practically excluded for both these genes in four breeds: Miniature Poodle, Dachshund, Labrador Retriever and Saarloos/Wolfhound. [source] |