Home About us Contact | |||
Nucleotide Differences (nucleotide + difference)
Selected AbstractsIntegrating DNA data and traditional taxonomy to streamline biodiversity assessment: an example from edaphic beetles in the Klamath ecoregion, California, USADIVERSITY AND DISTRIBUTIONS, Issue 5 2006Ryan M. Caesar ABSTRACT Conservation and land management decisions may be misguided by inaccurate or misinterpreted knowledge of biodiversity. Non-systematists often lack taxonomic expertise necessary for an accurate assessment of biodiversity. Additionally, there are far too few taxonomists to contribute significantly to the task of identifying species for specimens collected in biodiversity studies. While species level identification is desirable for making informed management decisions concerning biodiversity, little progress has been made to reduce this taxonomic deficiency. Involvement of non-systematists in the identification process could hasten species identification. Incorporation of DNA sequence data has been recognized as one way to enhance biodiversity assessment and species identification. DNA data are now technologically and economically feasible for most scientists to apply in biodiversity studies. However, its use is not widespread and means of its application has not been extensively addressed. This paper illustrates how such data can be used to hasten biodiversity assessment of species using a little-known group of edaphic beetles. Partial mitochondrial cytochrome oxidase I was sequenced for 171 individuals of feather-wing beetles (Coleoptera: Ptiliidae) from the Klamath ecoregion, which is part of a biodiversity hotspot, the California Floristic Province. A phylogram of these data was reconstructed via parsimony and the strict consensus of 28,000 equally parsimonious trees was well resolved except for peripheral nodes. Forty-two voucher specimens were selected for further identification from clades that were associated with many synonymous and non-synonymous nucleotide changes. A ptiliid taxonomic expert identified nine species that corresponded to monophyletic groups. These results allowed for a more accurate assessment of ptiliid species diversity in the Klamath ecoregion. In addition, we found that the number of amino acid changes or percentage nucleotide difference did not associate with species limits. This study demonstrates that the complementary use of taxonomic expertise and molecular data can improve both the speed and the accuracy of species-level biodiversity assessment. We believe this represents a means for non-systematists to collaborate directly with taxonomists in species identification and represents an improvement over methods that rely solely on parataxonomy or sequence data. [source] Linear allele-specific long-range amplification: a novel method of long-range molecular haplotyping,,HUMAN MUTATION, Issue 4 2005Wei-Ming Wu Abstract Haplotypes have been repeatedly shown to be more powerful than collections of single-locus markers in gene-mapping studies. Various haplotyping methods including statistical estimation are employed but molecular haplotyping, the acquisition of information directly on physical DNA sequences, has been in demand for its accuracy and independence from family pedigrees. We investigated the allelic specificity of long-range PCR, which was successful for long-range haplotyping in recent reports, and found problems of initial mispriming and crossover amplification significantly confounded its application. Based on these observations, we designed a novel method based on linear amplification of a hemizygous DNA segment with a single phosphorothioate-modified oligonucleotide. Our results revealed, with a single nucleotide polymorphism as the discriminative marker, downstream haplotypes of 14,15 kb DNA segment could be confidently scored. With two rounds of the method and five single nucleotide polymorphisms, molecular haplotypes of 29.3 kb spanning the HCR and CDSN genes, two genes associated with the susceptibility of psoriasis, of 11 members, belonging to a CEPH family, were revealed. Clear Mendelian segregation of 35 highly heterozygous SNPs confirmed the accuracy of the method. Problems of low specificity associated with long-range PCR were not observed. The simplicity, along with long-sequence accessibility and feasibility of a single nucleotide difference as the discriminative marker indicated our method holds promise for future gene-mapping studies. © 2005 Wiley-Liss, Inc. [source] cDNA sequence, mRNA expression and genomic DNA of trypsinogen from the Indianmeal moth, Plodia interpunctellaINSECT MOLECULAR BIOLOGY, Issue 1 2000Y. C. Zhu Abstract Trypsin-like enzymes are major insect gut enzymes that digest dietary proteins and proteolytically activate insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). Resistance to Bt in a strain of the Indianmeal moth, Plodia interpunctella, was linked to the absence of a major trypsin-like proteinase (Oppert et al., 1997). In this study, trypsin-like proteinases, cDNA sequences, mRNA expression levels and genomic DNAs from Bt-susceptible and -resistant strains of the Indianmeal moth were compared. Proteinase activity blots of gut extracts indicated that the susceptible strain had two major trypsin-like proteinases, whereas the resistant strain had only one. Several trypsinogen-like cDNA clones were isolated and sequenced from cDNA libraries of both strains using a probe deduced from a conserved sequence for a serine proteinase active site. cDNAs of 852 nucleotides from the susceptible strain and 848 nucleotides from the resistant strain contained an open reading frame of 783 nucleotides which encoded a 261-amino acid trypsinogen-like protein. There was a single silent nucleotide difference between the two cDNAs in the open reading frame and the predicted amino acid sequence from the cDNA clones was most similar to sequences of trypsin-like proteinases from the spruce budworm, Choristoneura fumiferana, and the tobacco hornworm, Manduca sexta. The encoded protein included amino acid sequence motifs of serine proteinase active sites, conserved cysteine residues, and both zymogen activation and signal peptides. Northern blotting analysis showed no major difference between the two strains in mRNA expression in fourth-instar larvae, indicating that transcription was similar in the strains. Southern blotting analysis revealed that the restriction sites for the trypsinogen genes from the susceptible and resistant strains were different. Based on an enzyme size comparison, the cDNA isolated in this study corresponded to the gene for the smaller of two trypsin-like proteinases, which is found in both the Bt-susceptible and -resistant strains of the Indianmeal moth. The sequences reported in this paper have been deposited in the GenBank database (accession numbers AF064525 for the RC688 strain and AF064526 for HD198). [source] Phylogeography of the world's tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugiaJOURNAL OF BIOGEOGRAPHY, Issue 1 2010Paul G. Nevill Abstract Aim, There is a need for more Southern Hemisphere phylogeography studies, particularly in Australia, where, unlike much of Europe and North America, ice sheet cover was not extensive during the Last Glacial Maximum (LGM). This study examines the phylogeography of the south-east Australian montane tree species Eucalyptus regnans. The work aimed to identify any major evolutionary divergences or disjunctions across the species' range and to examine genetic signatures of past range contraction and expansion events. Location, South-eastern mainland Australia and the large island of Tasmania. Methods, We determined the chloroplast DNA haplotypes of 410 E. regnans individuals (41 locations) based on five chloroplast microsatellites. Genetic structure was examined using analysis of molecular variance (AMOVA), and a statistical parsimony tree was constructed showing the number of nucleotide differences between haplotypes. Geographic structure in population genetic diversity was examined with the calculation of diversity parameters for the mainland and Tasmania, and for 10 regions. Regional analysis was conducted to test hypotheses that some areas within the species' current distribution were refugia during the LGM and that other areas have been recolonized by E. regnans since the LGM. Results, Among the 410 E. regnans individuals analysed, 31 haplotypes were identified. The statistical parsimony tree shows that haplotypes divided into two distinct groups corresponding to mainland Australia and Tasmania. The distribution of haplotypes across the range of E. regnans shows strong geographic patterns, with many populations and even certain regions in which a particular haplotype is fixed. Many locations had unique haplotypes, particularly those in East Gippsland in south-eastern mainland Australia, north-eastern Tasmania and south-eastern Tasmania. Higher haplotype diversity was found in putative refugia, and lower haplotype diversity in areas likely to have been recolonized since the LGM. Main conclusions, The data are consistent with the long-term persistence of E. regnans in many regions and the recent recolonization of other regions, such as the Central Highlands of south-eastern mainland Australia. This suggests that, in spite of the narrow ecological tolerances of the species and the harsh environmental conditions during the LGM, E. regnans was able to persist locally or contracted to many near-coastal refugia, maintaining a diverse genetic structure. [source] Isolation, Characterization and Preliminary Genetic Analysis of Laboratory Tricyclazole-resistant Mutants of the Rice Blast Fungus, Magnaporthe griseaJOURNAL OF PHYTOPATHOLOGY, Issue 7-8 2006C. Q. Zhang Abstract The minimum inhibitory concentration of tricyclazole for hyphal melanization (MIC-H) was adopted to detect the sensitivity of 129 Magnaporthe grisea isolates collected in China in 2000. Results showed that the mean MIC-H was 0.2 ,g/ml and no isolate with a MIC-H ,1 ,g/ml was detected. Therefore, 1 ,g/ml was chosen as a discriminatory dose to identify resistant mutants generated by ultraviolet (UV) radiation. Only three low-level resistant (R) mutants derived from the sensitive (S) isolate TH16 were obtained. In addition, fitness decrease was observed for all mutants, with lower sporulation ability and pathogenicity to rice than that of the wild strain TH16. Four crosses between S × R and S × S were tested to determine the inheritance mode of resistance during the process of sexual recombination by analysing the sensitivity of hybrid F1 progeny to tricyclazole. Progeny of crosses between a tricyclazole-sensitive strain and tricyclazole-resistant mutants segregated in a 1 : 1 (R : S) ratio and no segregation was found in the cross of S × S, indicating that each mutant contained a single gene for resistance. No nucleotide differences leading to amino acid changes in the coding sequences for 1,3,6,8-tetrahydroxynaphthalene reductase (4HNR) and 1,3,8-trihydroxynaphthalene reductase (3HNR) were found between resistant mutants and sensitive strains. Therefore, it is preliminarily concluded that tricyclazole resistance in M. grisea was conferred by a one-locus mutation in a single Mendelian gene other than those encoding for 4HNR or 3HNR. [source] The genus Adriohydrobia (Hydrobiidae: Gastropoda): polytypic species or polymorphic populations?JOURNAL OF ZOOLOGICAL SYSTEMATICS AND EVOLUTIONARY RESEARCH, Issue 4 2001T. Wilke In molluscs, the shell characters have historically played an important role in discrimination among species. However, because of the paucity, variability and degree of homoplasy of shell characters, their sole use for taxonomic and systematic studies is controversial in many groups. In the present paper the genus AdriohydrobiaRadoman, 1973 is used as a paradigm to test relationships of taxa that were considered to be species, mainly on the basis of the shell size variations. We tested whether the genus consists of several sympatric and polytypic species or a single species with polymorphic populations and whether the reported shell size differences, on which the description of three putative species is mainly based, are intrinsic or extrinsic. A fragment of the mitochondrial cytochrome oxidase I (COI) gene was used as an independent genetic marker. We found very little genetic variability in 40 specimens from four populations studied. The nucleotide-sequence diversity (,) within populations ranges from 0.0017 to 0.0056 and the nucleotide-sequence divergence (Dxy) between populations from 0.0018 to 0.0051. The phylogenetic network is very compact with two ,groups' of haplotypes that are separated by only two nucleotide positions. A plot of pairwise nucleotide differences against pairwise shell size differences did not reveal any distinct clusters and a Mantel test did not show any significant associations between the two matrices. Based on the very low genetic diversity, the lack of distinct clusters in the phylogenetic network and the lack of concordance between morphological and genetic differentiation it is concluded that only one species is involved, Adriohydrobia gagatinella. The previously reported morphogroups within Adriohydrobia are probably due to a discrete age structure in these population and/or due to the effect of trematode-induced gigantism. The observed genetic patterns in Adriohydrobia indicate a rapid population growth from an ancestral population of small evolutionary-effective size. The present study stresses the importance of testing species-level hypotheses based on shell characters using one or more independent markers. Die Gattung Adriohydrobia (Hydrobiidae: Gastropoda): polytypische Arten oder polymorphe Populationen? Schalenmerkmale spielen historisch eine wichtige Rolle bei der Bestimmung von Molluskenarten. Die alleinige Nutzung von Schalenmerkmalen für systematische und taxonomische Arbeiten ist jedoch in vielen Gruppen umstritten, da die relativ wenigen Schalenmerkmale oft sehr variabel und durch einen hohen Grad von Homoplasie gekennzeichnet sind. In der vorliegenden Arbeit wurde die Gattung AdriohydrobiaRadoman, 1973 als Fallbeispiel genutzt, um Beziehungen von Arten innerhalb einer Gattung zu untersuchen, die hauptsächlich anhand ihrer Schalengröße unterschieden werden. Es wurde getestet, ob die Gattung mehrere sympatrische und polytypische Arten oder nur eine Art mit polymorphen Populationen umfasst. Darüber hinaus wurde untersucht, ob die dokumentierten Unterschiede in der Schalenhöhe, auf welchen die Beschreibung der drei potentiellen Arten der Gattung hauptsächlich beruhte, intrinsisch oder extrinsisch sind. Als unabhängiger genetischer Marker wurde ein Fragment des mitochondrialen Gens für Cytochromoxidase I (COI) verwendet. Die untersuchten 40 Individuen von vier Populationen zeichneten sich durch eine nur sehr geringe genetische Variabilität aus. Die Nukleotidsequenz-Diversität (,) innerhalb der Populationen variiert zwischen 0.0017 und 0.0056; die Nukleotidsequenz-Divergenz (Dxy) zwischen den Populationen reicht von 0.0018 bi 0.0051. Das phylogenetische Netzwerk ist sehr kompakt und umfasst zwei ,Gruppen' von Haplotypen, welche durch nur zwei Nukleotidpositionen getrennt sind. Die graphische Darstellung von paarweisen Nukleotid-Differenzen gegen paarweise Gehäusegröße-Differenzen lässt keine diskreten Gruppen erkennen und ein Mantel-Test zeigt keine signifikanten Beziehungen zwischen den Matrices. Aufgrund der geringen genetischen Differenzierung, des Fehlens von diskreten Gruppen im phylogenetischen Netzwerk und des nicht-signifikanten Zusammenhanges von morphologischer and genetischer Differenzierung wird geschlussfolgert, dass nur eine Art involviert ist, Adriohydrobia gagatinella. Die in der Literatur dokumentierten Morpho-Gruppen beruhen vermutlich auf einer diskreten Altersstruktur in diesen Populationen und/oder auf den Auswirkungen von trematoden-induziertem Gigantismus. Die festgestellten genetischen Muster in Adriohydrobia lassen das schnelle Wachstum einer Stammpopulation von geringer evolutionär-effektiver Größe vermuten. Die vorliegende Studie ist ein Beispiel dafür, wie wichtig es sein kann, auf Schalenmerkmale beruhende Arthypothesen mit unabhängigen Markern zu verifizieren. [source] Structural organization of the est,31 gene in a Colombian strain of Culex quinquefasciatus differs from that in CubaMEDICAL AND VETERINARY ENTOMOLOGY, Issue 1 2002D. De Silva Abstract In Culex mosquitoes (Diptera: Culicidae), the most common mechanism for resistance to organophosphorus (OP) insecticides involves amplification of one or more esterases. Two esterase loci are often involved, with different allelic forms co-amplified. Est,31 is co-amplified with est,1 in a Colombian (COL) strain of Culex quinquefasciatus Say. These two alleles co-migrate on acrylamide gels, often leading to misscoring of the phenotype as elevation of a single est, enzyme. By sequencing COL genomic DNA, we determined the est,31 gene length is 1623 nucleotides. The open reading frame of est,31 encodes a 540 amino acid protein, as for est,21 in strain Pel RR from Sri Lanka. The intron/exon boundaries of est,31 are identical to those of est,21, suggesting that they are alleles of the same locus. The COL est,31 gene differs from est,32 in strain MRES from Cuba, although they have equivalent electrophoretic mobility, showing that these two strains contain distinct resistance-associated amplicons. Twenty nucleotide differences were scored between the MRES partial 495 bp sequence and that in the COL strain, with two amino acid changes, demonstrating distinct est, enzymes. Our sequencing data show 95% identity between the three est, genes (each has six introns and seven exons) in OP-resistant Cx. quinquefasciatus. Amplified est,31 and est,1 are at least 10 kb apart in temephos-selected COL and 2.7 kb apart in Pel RR, whereas these non-amplified genes are only 1.7 kb apart in the non-selected parental COL stock, as in Pel SS (susceptible Sri Lankan strain), demonstrating that this region of the genome is susceptible to expansion and contraction. [source] Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast AtlanticMOLECULAR ECOLOGY, Issue 17 2008P. V. DEBES Abstract We examined the genetic structure of the European sprat (Sprattus sprattus) by means of a 530-bp sequence of the mitochondrial control region from 210 fish originating from seven sampling localities of its distributional range. Phylogeographical analysis of 128 haplotypes showed a phylogenetic separation into two major clades with the Strait of Sicily acting as a barrier to gene flow between them. While no population differentiation was observed based on analysis of molecular variance and net nucleotide differences between samples of the Baltic Sea, the North Sea and the Bay of Biscay nor between the Black Sea and the Bosporus, a strong population differentiation between these samples and two samples from the Mediterranean Sea was found. Further, the biggest genetic distance was observed within the Mediterranean Sea between the populations of the Gulf of Lyon and the Adriatic Sea, indicating genetic isolation of these regions. Low genetic diversities and star-like haplotype networks of both Mediterranean Sea populations point towards recent demographic expansion scenarios after low population size, which is further supported by negative FS values and unimodal mismatch distributions with a low mean. Along the northeast Atlantic coast, a northwards range expansion of a large and stable population can be assumed. The history of a diverse but differentiated Black Sea population remains unknown due to uncertainties in the palaeo-oceanography of this sea. Our genetic data did not confirm the presently used classification into subspecies but are only preliminary in the absence of nuclear genetic analyses. [source] Extreme long-distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the NeotropicsMOLECULAR ECOLOGY, Issue 14 2007CHRISTOPHER W. DICK Abstract Many tropical tree species occupy continental expanses of rainforest and flank dispersal barriers such as oceans and mountains. The role of long-distance dispersal in establishing the range of such species is poorly understood. In this study, we test vicariance hypotheses for range disjunctions in the rainforest tree Ceiba pentandra, which is naturally widespread across equatorial Africa and the Neotropics. Approximate molecular clocks were applied to nuclear ribosomal [ITS (internal transcribed spacer)] and chloroplast (psbB- psbF) spacer DNA sampled from 12 Neotropical and five West African populations. The ITS (N = 5) and psbB- psbF (N = 2) haplotypes exhibited few nucleotide differences, and ITS and psbB- psbF haplotypes were shared by populations on both continents. The low levels of nucleotide divergence falsify vicariance explanations for transatlantic and cross-Andean range disjunctions. The study shows how extreme long-distance dispersal, via wind or marine currents, creates taxonomic similarities in the plant communities of Africa and the Neotropics. [source] Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversityMOLECULAR ECOLOGY RESOURCES, Issue 6 2009DOROTA L. PORAZINSKA Abstract Nematodes play an important role in ecosystem processes, yet the relevance of nematode species diversity to ecology is unknown. Because nematode identification of all individuals at the species level using standard techniques is difficult and time-consuming, nematode communities are not resolved down to the species level, leaving ecological analysis ambiguous. We assessed the suitability of massively parallel sequencing for analysis of nematode diversity from metagenomic samples. We set up four artificial metagenomic samples involving 41 diverse reference nematodes in known abundances. Two samples came from pooling polymerase chain reaction products amplified from single nematode species. Two additional metagenomic samples consisted of amplified products of DNA extracted from pooled nematode species. Amplified products involved two rapidly evolving ~400-bp sections coding for the small and large subunit of rRNA. The total number of reads ranged from 4159 to 14771 per metagenomic sample. Of these, 82% were > 199 bp in length. Among the reads > 199 bp, 86% matched the referenced species with less than three nucleotide differences from a reference sequence. Although neither rDNA section recovered all nematode species, the use of both loci improved the detection level of nematode species from 90 to 97%. Overall, results support the suitability of massively parallel sequencing for identification of nematodes. In contrast, the frequency of reads representing individual species did not correlate with the number of individuals in the metagenomic samples, suggesting that further methodological work is necessary before it will be justified for inferring the relative abundances of species within a nematode community. [source] First record of Asteronema rhodochortonoides (Phaeophyceae) for the Pacific OceanPHYCOLOGICAL RESEARCH, Issue 4 2001Kazuhiro Kogame SUMMARY Morphological observations of a minute, filamentous, branched brown alga epiphytic on Sargassum thun-bergii (Mertens ex Roth) Kuntze were made on material collected at Tsuyazaki (33°48,N, 130°27,E), Fukuoka Prefecture, southern Japan. This alga was assignable to Asteronema rhodochortonoides (Børgesen) Möller et Parodi in having stellately arranged chloroplasts with several pyrenoids grouped in the center, predominantly apical growth, narrow filaments, and elliptical or broadly elliptical plurilocular zoidangia that are apically or laterally formed on upright filaments. A comparison of partial nuclear small subunit rDNA sequences between the Japanese material and A. rhodochortonoides from the Canary Islands showed only two or three nucleotide differences. This supports our assignment of the Japanese material to this species as a first report for the Pacific Ocean. In laboratory cultures, zoids released from plurilocular zoidangia developed into plants with morphology similar to the field-collected plants. This cycle repeated without production of unilocular zoidangia in our cultures. [source] Mitochondrial DNA sequence analysis in SicilyAMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2001G. Vona This study reports data on the sequences of the first hypervariable segment of a sample of the Sicilian population from Alia (Palermo, Italy). The results show the presence of 32 different haplotypes in the 49 individuals examined. The average number of pairwise nucleotide differences was 4.04, i.e., 1.17% per nucleotide. The distribution of the nucleotide differences matches the theoretical distribution and indicates only one major episode of expansion that occurred between 20,732 and 59,691 years ago, between the Middle Paleolithic and Upper Paleolithic. Compared with the other populations, parameters of the Sicilian sample lie in an intermediate position between the eastern and western Mediterranean populations. This is due to numerous contacts that Sicily has had with the Mediterranean area since prehistoric times. At the same time, the singularity of some of the haplotypes present in the sample studied indicates the persistence of some characteristics caused by genetic drift and isolation that the population has endured in the course of its history. Am. J. Hum. Biol. 13:576,589, 2001. © 2001 Wiley-Liss, Inc. [source] Erysiphe trifolii, a newly recognized powdery mildew pathogen of peaPLANT PATHOLOGY, Issue 4 2010R. N. Attanayake Diversity of powdery mildew pathogens infecting pea (Pisum sativum) in the US Pacific Northwest was investigated using both molecular and morphological techniques. Phylogenetic analyses based on rDNA ITS sequences, in combination with assessment of morphological characters, defined two groups of powdery mildews infecting pea. Group I (five field samples and three glasshouse samples) had ITS sequences 99% similar to those of Erysiphe pisi in GenBank and exhibited simple, mycelioid type of chasmothecial appendages typical of E. pisi. Erysiphe pisi is normally considered as the powdery mildew pathogen of pea. Group II (four glasshouse samples and two field samples) had ITS sequences 99% similar to those of E. trifolii and produced chasmothecia with dichotomously branched appendages similar to those of E. trifolii. There are fourteen nucleotide differences in the ITS region between the two groups. The correlation of rDNA ITS sequences with teleomorphic features for each of the two groups confirms their identity. Repeated samplings and artificial inoculations indicate that both E. pisi and E. trifolii infect pea in the US Pacific Northwest. Erysiphe trifolii is not previously known as a pathogen of pea. The existence of two distinct powdery mildew species infecting pea in both glasshouse and field environments may interfere with the powdery mildew-resistance breeding programmes, and possibly explains putative instances of breakdown of resistance in previously resistant pea breeding lines. [source] Genotyping single nucleotide polymorphisms using intact polymerase chain reaction products by electrospray quadrupole mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 18 2001James J. Walters Both single nucleotide polymorphisms (SNPs) and mutations are commonly observed in the gene encoding the tumor suppressor protein, p53. SNPs occur at specific locations within genes whereas mutations may be distributed across large regions of genes. When determining nucleotide differences, mass spectrometry is the only method other than Sanger sequencing which offers direct structural information. Electrospray ionization (ESI) quadrupole mass spectrometry (MS) analysis of intact polymerase chain reaction (PCR) products was performed following a simple purification and on-line heating to limit ion adduction. The PCR products were amplified directly from genomic DNA rather than plasmids, as in our previous work. Two known polymorphisms of the p53 gene were genotyped. A cytosine (C) or guanine (G) transversion, designated C,,,G (G,,,C on the opposite strand), were each detected by a 40.0,Da change upon ESI quadrupole MS analysis. Using known PCR products as standards, the genotypes determined for 10 human samples corresponded with restriction fragment length polymorphism (RFLP) analysis. Cytosine/thymine (T) transitions, designated C,,,T (G,,,A on the opposite strand), were also genotyped by ESI-MS. This SNP is discriminated by a 15.0,Da change on one strand (C,,,T) and a 16.0,Da change on the other (G,,,A). Appropriate sample preparation and instrumental configuration (including heated sample inlet syringe and MS source), to limit adducts, are both vital for successful ESI quadrupole MS analysis of intact PCR products. Copyright © 2001 John Wiley & Sons, Ltd. [source] Complete nucleotide sequence of mitochondrial DNA in White Leghorn and White Plymouth Rock chickensANIMAL SCIENCE JOURNAL, Issue 5 2003Masahide NISHIBORI ABSTRACT Among the chicken breeds, White Leghorn (WL) and White Plymouth Rock (WR) are major breeds and have different history in their establishments. Whole mitochondrial DNA of the breeds were sequenced in order to elucidate the genetic relationship between the breeds. The lengths of the two WL and two WR mitochondrial DNA were found to be 16 788 and 16 785 base pairs, respectively. When the DNA sequences were compared, the similarity was found to be 99.96% (six nucleotide differences). In addition, the present study conformed the existence of an extra nucleotide ,C' in NADH dehydrogenase subunit 3 (ND3) of the chicken mitochondrial DNA, which has been consistently observed in Galliformes. [source] Genetic Heterogeneity of IcelandersANNALS OF HUMAN GENETICS, Issue 1 2003E. Árnason Summary Recently statements have been made about a special ,genetic homogeneity' of the Icelanders that are at variance with earlier work on blood groups and allozymes. To validate these claims an extensive reanalysis was undertaken of mtDNA variation by examining primary data from original sources on 26 European populations. The results show that Icelanders are among the most genetically heterogeneous Europeans by the mean number of nucleotide differences as well as by estimates of , parameters of the neutral theory. The distribution of pairwise differences in general has the same shape as European populations and shows no evidence of bottlenecks of numbers in Iceland. The allelic frequency distribution of Iceland is relatively even with a large number of haplotypes at polymorphic frequencies contrasting with other countries. This is a signature of admixture during the founding or history of Iceland. Assumptions of models used to simulate number of haplotypes at sampling saturation for comparing populations are violated to different degrees by various countries. Anomalies identified in data in previous reports on Icelandic mtDNA variation appear to be due to errors in publicly accessible databases. This study demonstrates the importance of basing analyses on primary data so that errors are not propagated. Claims about special genetic homogeneity of Icelanders are not supported by evidence. [source] Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumanniiCLINICAL MICROBIOLOGY AND INFECTION, Issue 8 2007J. F. Turton Abstract Representatives (n = 31) of outbreak strains of Acinetobacter baumannii from five countries fell into three clear groups, designated Groups 1,3, based on their ompA (outer-membrane protein A), csuE (part of a pilus assembly system required for biofilm formation) and blaOXA-51-like (the intrinsic carbapenemase gene in A. baumannii) gene sequences. With the exception of the closely related alleles within the Group 1 clonal complex, alleles at each locus were highly distinct from each other, with a minimum of 14 nucleotide differences between any two alleles. Isolates within a group shared the same combination of alleles at the three loci, providing compelling evidence that the outbreak strains investigated belonged to three clonal lineages. These corresponded to the previously identified European clones I,III. Sequence differences among the alleles were used to design multiplex PCRs to rapidly assign isolates belonging to particular genotypes to sequence groups. In the UK, genotypes belonging to the Group 1 clonal complex have been particularly successful, accounting for the vast majority of isolates referred from hospitals experiencing problems with Acinetobacter. [source] |