Nucleoside Transporter (nucleoside + transporter)

Distribution by Scientific Domains

Kinds of Nucleoside Transporter

  • equilibrative nucleoside transporter


  • Selected Abstracts


    Nucleoside transporter and nucleotide vesicular transporter: Two examples of mnemonic regulation

    DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
    Raquel P. Sen
    Abstract According to their relevant roles in the regulation and availability of extracellular levels of purinergic signals, the nucleoside transporter and the nucleotide vesicular transporter are subject to acute regulation. The plasma membrane nucleoside transporter has been shown to exhibit several regulatory mechanisms, such as regulation by long-term signals, phosphorylation/dephosphorylation processes, and allosteric modulation. The present work reviews studies concerning allosteric modulation of nucleoside and nucleotide vesicular transporters, as the first reported examples of mnemonic behavior in transporter proteins, presenting kinetic and allosteric cooperativity. This fact implies that the protein can exhibit different conformations, each one with specific kinetic parameters. Transport substrates are able to induce slow conformational changes between the different forms of the transporter. This kinetic mechanism can provide several physiological advantages, since it allows strict control of transport capacity by changes in substrate concentrations. This allosteric modulation has been confirmed in several experimental models, the nucleoside transporter in chromaffin and endothelial cells from adrenal medulla and the nucleotide vesicular transporter in the chromaffin cell granules and rat brain synaptic vesicles. Taking into account these considerations, the mnemonic regulation described here could be a widespread mechanism among transporter proteins. Drug Dev. Res. 52:11,21, 2001. © 2001 Wiley-Liss, Inc. [source]


    Adenosine downregulates cytokine-induced expression of intercellular adhesion molecule-1 on rheumatoid synovial fibroblasts independently of adenosine receptor signaling

    DRUG DEVELOPMENT RESEARCH, Issue 4 2003
    Takashi Nakazawa
    Abstract Adhesion of fibroblast-like synoviocytes (FLSs) to T cells through the interaction of lymphocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA). We therefore used flow cytometry and quantitative polymerase chain reaction (PCR) to examine the effect of adenosine and its derivatives on expression of ICAM-1 induced by tumor necrosis factor-alpha and interferon-gamma in primary rheumatoid FLSs (RA-FLSs) and E11 cells, an RA-FLS line. Exposing cells to adenosine (5,500 µM) for 24 h in the presence of coformycin, an adenosine deaminase inhibitor, concentration-dependently inhibited cytokine-induced transcription of ICAM-1 mRNA, as well as subsequent surface expression of the protein. Although transcription of all four adenosine receptor isoforms has been detected in FLSs, neither the A1 receptor agonist R-PIA, the A2A receptor agonist CGS21680 nor the A3 agonist Cl-IB-MECA had any effect on cytokine-induced ICAM-1 expression. Conversely, A1/A2 receptor antagonist xanthine amine congener and A2A antagonist ZM240385 both failed to suppress the effect of adenosine. Adenosine appears to inhibit cytokine-induced ICAM-1 expression in FLSs independently of adenosine receptor-mediated signaling. By contrast, the effect of adenosine was neutralized by nitrobenzylmercaptopurin, a nucleoside transporter inhibitor, or by ABT702, an adenosine kinase inhibitor. This suggests that adenosine taken up via the nucleoside transporter is phosphorylated by adenosine kinase, and the resultant phospho-adenosine interferes with the ICAM-1 transcription and cell surface expression. Downregulation of T cell,FLS interaction by adenosine may thus represent a novel approach to the treatment of RA. Drug Dev. Res. 58:368,376, 2003. © 2003 Wiley-Liss, Inc. [source]


    Nucleoside transporter and nucleotide vesicular transporter: Two examples of mnemonic regulation

    DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
    Raquel P. Sen
    Abstract According to their relevant roles in the regulation and availability of extracellular levels of purinergic signals, the nucleoside transporter and the nucleotide vesicular transporter are subject to acute regulation. The plasma membrane nucleoside transporter has been shown to exhibit several regulatory mechanisms, such as regulation by long-term signals, phosphorylation/dephosphorylation processes, and allosteric modulation. The present work reviews studies concerning allosteric modulation of nucleoside and nucleotide vesicular transporters, as the first reported examples of mnemonic behavior in transporter proteins, presenting kinetic and allosteric cooperativity. This fact implies that the protein can exhibit different conformations, each one with specific kinetic parameters. Transport substrates are able to induce slow conformational changes between the different forms of the transporter. This kinetic mechanism can provide several physiological advantages, since it allows strict control of transport capacity by changes in substrate concentrations. This allosteric modulation has been confirmed in several experimental models, the nucleoside transporter in chromaffin and endothelial cells from adrenal medulla and the nucleotide vesicular transporter in the chromaffin cell granules and rat brain synaptic vesicles. Taking into account these considerations, the mnemonic regulation described here could be a widespread mechanism among transporter proteins. Drug Dev. Res. 52:11,21, 2001. © 2001 Wiley-Liss, Inc. [source]


    Evaluation of detergents for the soluble expression of ,-helical and ,-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system

    FEBS JOURNAL, Issue 23 2005
    Christian Klammt
    Cell-free expression has become a highly promising tool for the fast and efficient production of integral membrane proteins. The proteins can be produced as precipitates that solubilize in mild detergents usually without any prior denaturation sttif. Alternatively, membrane proteins can be synthesized in a soluble form by adding detergents to the cell-free system. However, the effects of a representative variety of detergents on the production, solubility and activity of a wider range of membrane proteins upon cell-free expression are currently unknown. We therefore analyzed the cell-free expression of three structurally very different membrane proteins, namely the bacterial ,-helical multidrug transporter, EmrE, the ,-barrel nucleoside transporter, Tsx, and the porcine vasopressin receptor of the eukaryotic superfamily of G-protein coupled receptors. All three membrane proteins could be produced in amounts of several mg per one ml of reaction mixture. In general, the detergent 1-myristoyl-2-hydroxy- sn -glycero-3-[phospho- rac -(1-glycerol)] was found to be most effective for the resolubilization of membrane protein precipitates, while long chain polyoxyethylene-alkyl-ethers proved to be most suitable for the soluble expression of all three types of membrane proteins. The yield of soluble expressed membrane protein remained relatively stable above a certain threshold concentration of the detergents. We report, for the first time, the high-level cell-free expression of a ,-barrel type membrane protein in a functional form. Structural and functional variations of the analyzed membrane proteins are evident that correspond with the mode of expression and that depend on the supplied detergent. [source]


    The type 1 equilibrative nucleoside transporter regulates anxiety-like behavior in mice

    GENES, BRAIN AND BEHAVIOR, Issue 8 2007
    J. Chen
    Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light,dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders. [source]


    Insulin restores glucose inhibition of adenosine transport by increasing the expression and activity of the equilibrative nucleoside transporter 2 in human umbilical vein endothelium

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006
    Gonzalo Muñoz
    L -Arginine transport and nitric oxide (NO) synthesis (L -arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D -glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D -glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D -glucose. Insulin increased hENT2 protein abundance in normal or high D -glucose, but reduced hENT1 protein abundance in normal D -glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D -glucose. Insulin effect on hENT1 mRNA expression in normal D -glucose was blocked by NG -nitro- L -arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S -nitroso- N -acetyl- L,D -penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development. J. Cell. Physiol. 209: 826,835, 2006. © 2006 Wiley-Liss, Inc. [source]


    Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1

    AGING CELL, Issue 3 2009
    Sang-Kyu Park
    Summary Oxidative stress has been hypothesized to play a role in normal aging. The response to oxidative stress is regulated by the SKN-1 transcription factor, which also is necessary for intestinal development in Caenorhabditis elegans. Almost a thousand genes including the antioxidant and heat-shock responses, as well as genes responsible for xenobiotic detoxification were induced by the oxidative stress which was found using transcriptome analysis. There were also 392 down-regulated genes including many involved in metabolic homeostasis, organismal development, and reproduction. Many of these oxidative stress-induced transcriptional changes are dependent on SKN-1 action; the induction of the heat-shock response is not. When RNAi to inhibit genes was used, most had no effect on either resistance to oxidative stress or longevity; however two SKN-1-dependent genes, nlp-7 and cup-4, that were up-regulated by oxidative stress were found to be required for resistance to oxidative stress and for normal lifespan. nlp-7 encodes a neuropeptide-like protein, expressed in neurons, while cup-4 encodes a coelomocyte-specific, ligand-gated ion channel. RNAi of nlp-7 or cup-4 increased sensitivity to oxidative stress and reduced lifespan. Among down-regulated genes, only inhibition of ent-1, a nucleoside transporter, led to increased resistance to oxidative stress; inhibition had no effect on lifespan. In contrast, RNAi of nhx-2, a Na+/H+ exchanger, extended lifespan significantly without affecting sensitivity to oxidative stress. These findings showed that a transcriptional shift from growth and maintenance towards the activation of cellular defense mechanisms was caused by the oxidative stress; many of these transcriptional alterations are SKN-1 dependent. [source]


    Role of Wake-Promoting Basal Forebrain and Adenosinergic Mechanisms in Sleep-Promoting Effects of Ethanol

    ALCOHOLISM, Issue 6 2010
    Mahesh M. Thakkar
    Background:, Ethanol intake has significant impact on sleep. However, the cellular substrates responsible for sleep promotion following ethanol intake are unknown. The purine nucleoside, adenosine, is responsible for mediating many neuronal and behavioral responses to ethanol. Studies performed in cell cultures suggest that ethanol inhibits equilibrative nucleoside transporter 1 to block the reuptake of adenosine resulting in increased extracellular adenosine. Adenosine also has a pivotal role in sleep regulation. Adenosine acts via A1 receptor to inhibit the wake-promoting neurons of the basal forebrain (BF) resulting in the promotion of sleep. Is ethanol-induced sleep associated with the inhibition of the BF wake-promoting neurons? Do adenosinergic mechanisms in the BF have a role in sleep-promoting effects of ethanol? Methods:, To address these questions, we performed 3 experiments in Sprague,Dawley rats. First, we verified the effect of ethanol on sleep promotion. Second, we evaluated the effect of ethanol on c-Fos expression (a marker of neuronal activation) in the BF wake-promoting neurons and third we monitored the effects of A1 receptor blockade in the BF on ethanol-induced sleep. Results:, Significant increase in non-rapid eye movement (NREM) sleep with a concomitant decrease in wakefulness was observed during the first 12 hours postethanol. REM sleep remained unaffected. Ethanol administration caused a significant decrease in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Bilateral microinjections of a selective A1R receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine into the BF significantly attenuated sleep-promoting effects of ethanol. Conclusion:, These results suggest that the inhibition of BF wake-promoting neurons by adenosinergic mechanism may be responsible for the sleep promoting effects of ethanol. We believe our study is the first to investigate the cellular mechanisms responsible for the somnogenic effects of ethanol. [source]


    ENT1 Regulates Ethanol-Sensitive EAAT2 Expression and Function in Astrocytes

    ALCOHOLISM, Issue 6 2010
    Jinhua Wu
    Background:, Equilibrative nucleoside transporter 1 (ENT1) and excitatory amino acid transporter 2 (EAAT2) are predominantly expressed in astrocytes where they are thought to regulate synaptic adenosine and glutamate levels. Because mice lacking ENT1 display increased glutamate levels in the ventral striatum, we investigated whether ENT1 regulates the expression and function of EAAT2 in astrocytes, which could contribute to altered glutamate levels in the striatum. Methods:, We examined the effect of ENT1 inhibition and overexpression on the expression of EAAT2 using quantitative real-time PCR and measured glutamate uptake activity in cultured astrocytes. We also examined the effect of 0 to 200 mM ethanol doses for 0 to 24 hours of ethanol exposure on EAAT2 expression and glutamate uptake activity. We further examined the effect of ENT1 knockdown by a specific siRNA on ethanol-induced EAAT2 expression. Results:, An ENT1-specific antagonist and siRNA treatments significantly reduced both EAAT2 expression and glutamate uptake activity while ENT1 overexpression up-regulated EAAT2 mRNA expression. Interestingly, 100 or 200 mM ethanol exposure increased EAAT2 mRNA expression as well as glutamate uptake activity. Moreover, we found that ENT1 knockdown inhibited the ethanol-induced EAAT2 up-regulation. Conclusions:, Our results suggest that ENT1 regulates glutamate uptake activity by altering EAAT2 expression and function, which might be implicated in ethanol intoxication and preference. [source]


    Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial Epithelial Cells

    ALCOHOLISM, Issue 5 2009
    Diane S. Allen-Gipson
    Background:, Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A1, A2A, A2B, and A3). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. Methods:, To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 ,M: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [3H]-adenosine at various time intervals. Results:, Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. Conclusions:, Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis. [source]


    Determinants of sensitivity and resistance to gemcitabine: The roles of human equilibrative nucleoside transporter 1 and deoxycytidine kinase in non-small cell lung cancer

    CANCER SCIENCE, Issue 9 2004
    Hiroyuki Achiwa
    Gemcitabine is one of the most commonly used agents for lung cancer chemotherapy, but the determinants of sensitivity and/or resistance to this agent are not yet fully understood. In this study we used quantitative RT-PCR to examine the expression levels of human equilibrative nucleoside transporter 1 (hENT1) and deoxycytidine kinase (dCK) genes in non-small cell lung cancer (NSCLC) cell lines in relation to sensitivity and resistance to gemcitabine. The basal expression levels of hENT1 were significantly correlated with the IC50 values for gemcitabine (r=-0.6769, P=0.0005), whereas dCK expression levels were not. In a highly gemcitabine-sensitive cell line, NCI-H23, the sensitivity to gemcitabine was inhibited by nitrobenzylmercaptopurine ribonucleoside (NBMPR), an inhibitor of hENT1, without significant modulation of hENT1 expression. These data suggest that hENT1 is associated with gemcitabine sensitivity in lung cancer. We also continuously exposed NCI-H23 cells to gemcitabine and subsequently established the drug-resistant clone H23/GEM-R, which showed a significant decrease of dCK expression; however, hENT1 expression was not altered in the continuously exposed sublines or in the resistant clone. We conclude that increased hENT1 expression is a determinant of gemcitabine sensitivity, while decreased dCK expression is associated with acquired resistance to gemcitabine in NSCLC cells. Thus, hENT1 and dCK might be useful as predictive markers for efficacy of gemcitabine therapy in NSCLC. [source]


    The type 1 equilibrative nucleoside transporter regulates anxiety-like behavior in mice

    GENES, BRAIN AND BEHAVIOR, Issue 8 2007
    J. Chen
    Activation of adenosine receptors in the brain reduces anxiety-like behavior in animals and humans. Because nucleoside transporters regulate adenosine levels, we used mice lacking the type 1 equilibrative nucleoside transporter (ENT1) to investigate whether ENT1 contributes to anxiety-like behavior. The ENT1 null mice spent more time in the center of an open field compared with wild-type littermates. In the elevated plus maze, ENT1 null mice entered more frequently into and spent more time exploring the open arms. The ENT1 null mice also spent more time exploring the light side of a light,dark box compared with wild-type mice. Microinjection of an ENT1-specific antagonist, nitrobenzylthioinosine (nitrobenzylmercaptopurine riboside), into the amygdala of C57BL/6J mice reduced anxiety-like behavior in the open field and elevated plus maze. These findings show that amygdala ENT1 modulates anxiety-like behavior. The ENT1 may be a drug target for the treatment of anxiety disorders. [source]


    Nucleoside transporter expression and function in cultured mouse astrocytes

    GLIA, Issue 1 2005
    Liang Peng
    Abstract Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755,760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1,4°C to study diffusional uptake and 1,60-min uptakes at 37°C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na+ -independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na+ -dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. © 2005 Wiley-Liss, Inc. [source]


    Insulin restores glucose inhibition of adenosine transport by increasing the expression and activity of the equilibrative nucleoside transporter 2 in human umbilical vein endothelium

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006
    Gonzalo Muñoz
    L -Arginine transport and nitric oxide (NO) synthesis (L -arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D -glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D -glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D -glucose. Insulin increased hENT2 protein abundance in normal or high D -glucose, but reduced hENT1 protein abundance in normal D -glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D -glucose. Insulin effect on hENT1 mRNA expression in normal D -glucose was blocked by NG -nitro- L -arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S -nitroso- N -acetyl- L,D -penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development. J. Cell. Physiol. 209: 826,835, 2006. © 2006 Wiley-Liss, Inc. [source]


    Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial Epithelial Cells

    ALCOHOLISM, Issue 5 2009
    Diane S. Allen-Gipson
    Background:, Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A1, A2A, A2B, and A3). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. Methods:, To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 ,M: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [3H]-adenosine at various time intervals. Results:, Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. Conclusions:, Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis. [source]