Nuclear Pattern (nuclear + pattern)

Distribution by Scientific Domains


Selected Abstracts


Dynamic changes in glypican-1 expression in dorsal root ganglion neurons after peripheral and central axonal injury

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Stefan Bloechlinger
Abstract Glypican-1, a glycosyl phosphatidyl inositol (GPI)-anchored heparan sulphate proteoglycan expressed in the developing and mature cells of the central nervous system, acts as a coreceptor for diverse ligands, including slit axonal guidance proteins, fibroblast growth factors and laminin. We have examined its expression in primary sensory dorsal root ganglion (DRG) neurons and spinal cord after axonal injury. In noninjured rats, glypican-1 mRNA and protein are constitutively expressed at low levels in lumbar DRGs. Sciatic nerve transection results in a two-fold increase in mRNA and protein expression. High glypican-1 expression persists until the injured axons reinnervate their peripheral targets, as in the case of a crushed nerve. Injury to the central axons of DRG neurons by either a dorsal column injury or a dorsal root transection also up-regulates glypican-1, a feature that differs from most DRG axonal injury-induced genes, whose regulation changes only after peripheral and not central axonal injury. After axonal injury, the cellular localization of glypican-1 changes from a nuclear pattern restricted to neurons in noninjured DRGs, to the cytoplasm and membrane of injured neurons, as well as neighbouring non-neuronal cells. Sciatic nerve transection also leads to an accumulation of glypican-1 in the proximal nerve segment of injured axons. Glypican-1 is coexpressed with robo 2 and its up-regulation after axonal injury may contribute to an altered sensitivity to axonal growth or guidance cues. [source]


Expression of growth hormone receptor in benign and malignant cutaneous proliferative entities ,

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 6 2000
Manuel Ginarte
The skin has the necessary elements to respond to growth hormone (GH) and suffers clinical changes in the pathological circumstances of excess and deficiency of GH. The GH has been involved in the development of different types of human neoplasms. Based on these data, we have studied the GH receptor (GHR) expression in acrochordons, seborrheic keratosis, melanocytic nevi, histiocytomas, squamous cell carcinomas, basal cell carcinomas, and malignant melanomas by means of the immunohistochemistry with the monoclonal antibody MAb 263. All the entities showed immunoreactivity for GHR. In the histiocytomas, the expression of GHR in the keratinocytes of the hyperplastic epidermis coating the lesion showed a strong nuclear pattern, but the non-hyperplastic epidermis of the edges of the histiocytomas expressed GHR with a cytoplasmic pattern. In the basal cell carcinoma and squamous cell carcinoma, the immunoreactivity was weaker than in normal skin. In the squamous cell carcinoma, the intensity of immunostaining correlated directly with the grade of cellular differentation. In conclusion, the GH may be involved in the development of different kinds of cutaneous neoplasms, and the intracellular localization of GHR may imply a functional significance, at least in the histiocytomas. [source]


Oncocytic papillary renal cell carcinoma with inverted nuclear pattern: Distinct subtype with an indolent clinical course

PATHOLOGY INTERNATIONAL, Issue 3 2009
Bong-Hee Park
Reported herein are seven cases of a histologically distinct oncocytic papillary renal cell carcinoma (OPRCC) with an inverted nuclear pattern. To define its prognostic significance, the clinicopathological features of OPRCC were compared to those of types 1 and 2 PRCC. The median age of the seven patients was 67 years. Grossly, tumors were well-circumscribed and small (1.2 cm ± 0.4 cm). Microscopically, the OPRCC were composed of well-developed thin papillae, lined with a single layer of cuboidal-to-columnar oncocytic cells. The tumor cells had round-to-oval nuclei and eosinophilic granular cytoplasm, which was strongly positive for anti-mitochondrial immunostaining. The nuclei were characteristically polarized toward the surface of the papillae and contained mostly small nucleoli. The tumors had high expression of ,-methylacyl-coenzyme A racemase, CD15, CD117, cytokeratin (CK) 7, E-cadherin, epithelial membrane antigen, MOC 31, mucin-1, vascular endothelial growth factor and vimentin, low expression of CD10 and Ki-67, and no expression of CK20. Genetically, gain of chromosomes 3p, 11q, and 17q, and loss of chromosome 4q was observed. All seven patients were alive with no recurrence or metastasis at a mean follow-up time of 37.1 ± 23.7 months. In conclusion, OPRCC show unique pathological features with indolent clinical behavior and are more similar clinicopathologically to type 1 than to type 2 PRCC. [source]


FUS-Immunoreactive Intranuclear Inclusions in Neurodegenerative Disease

BRAIN PATHOLOGY, Issue 3 2010
John Woulfe
Abstract Neuronal intranuclear inclusions (NIIs) are a histopathological hallmark of several neurodegenerative disorders. However, the role played by NIIs in neurodegenerative pathogenesis remains enigmatic. Defining their molecular composition represents an important step in understanding the pathophysiology of these disorders. Recently, a nuclear protein, "fused-in-sarcoma" (FUS) was identified as the pathological protein in two forms of frontotemporal lobar degeneration (FTLD-IF, formerly known as neuronal intermediate filament inclusion disease, and FTLD-UPS, formerly known as atypical FTLD-U), both of which are characterized by the presence of NII. The objective of the present study was to determine the range of neurodegenerative disorders characterized by FUS-positive NIIs. Immunostaining for FUS revealed intense reactivity of NIIs in FTLD-IF and FTLD-UPS as well as in Huntington's disease, spinocerebellar ataxias 1 and 3, and neuronal intranuclear inclusion body disease. In contrast, there was no FUS staining of NIIs in inherited forms of FTLD-TDP caused by GRN and VCP mutations, fragile-X-associated tremor ataxia syndrome, or oculopharyngeal muscular dystrophy. In a cell culture model of Huntington's disease, NIIs were intensely FUS-positive. NII-bearing cells displayed loss of the normal diffuse nuclear pattern of FUS staining. This suggests that sequestration of nuclear FUS by NIIs may interfere with its normal nuclear localization. [source]


Heparin-binding epidermal growth factor-like growth factor isoforms and epidermal growth factor receptor/ErbB1 expression in bladder cancer and their relation to clinical outcome

CANCER, Issue 10 2007
Christopher Kramer MD
Abstract BACKGROUND. Cleavage of membrane-anchored heparin-binding epidermal growth factor-like growth factor (proHB-EGF) yields a soluble HB-EGF isoform (sHB-EGF), which is an activating epidermal growth factor receptor (EGFR) ligand and a C-terminal fragment HB-EGF-C acting directly in the nucleus. In bladder cancer, overexpression of both HB-EGF and EGFR have been observed, but to the authors' knowledge the prognostic significance of different modes of HB-EGF signaling have remained unclear. METHODS. Expression and intracellular localization of HB-EGF and EGFR were examined by immunohistochemistry in paraffin-embedded specimens from 121 patients who underwent cystectomy for bladder cancer. Tumor stage was pTis/pT1 in 7 patients, pT2 in 41 patients, pT3 in 55 patients, and pT4 in 18 patients. Lymph node metastases were present in 32 patients. RESULTS. Using an antibody directed against the C-terminal domain, HB-EGF expression was detected in the cytoplasm or in the nucleus of tumor cells. EGFR staining was uniform at the plasma membrane. The actuarial 5-year cancer-specific survival of patients with tumors with predominant nuclear HB-EGF staining was 28% compared with 57% if HB-EGF staining was predominantly cytoplasmic (P = .027). Disease outcome of patients with a ,mixed' HB-EGF staining pattern was found to be between that of the 2 former groups. In agreement with previous studies, strong EGFR expression was associated with poor prognosis. Despite strong EGFR expression, predominant cytoplasmic HB-EGF staining was associated with a more favorable outcome, whereas a predominant nuclear pattern defined a subgroup with extremely poor prognosis (5-year tumor-specific survival of 55% vs 13%, respectively; P = .026). CONCLUSIONS. The current study results confirm that EGFR expression is significantly correlated with disease-specific mortality but that the outcome is also influenced by the mode of HB-EGF signaling. Additional nuclear HB-EGF signaling, indicative of increased cleavage of proHB-EGF, appears to enhance the adverse activities. Cytoplasmic HB-EGF staining likely reflects proHB-EGF, which may also exert antiproliferative effects. Cancer 2007. © 2007 American Cancer Society. [source]