Nuclear Architecture (nuclear + architecture)

Distribution by Scientific Domains


Selected Abstracts


Gene position within chromosome territories correlates with their involvement in distinct rearrangement types in thyroid cancer cells

GENES, CHROMOSOMES AND CANCER, Issue 3 2009
Manoj S. Gandhi
Chromosomal rearrangements in human cancers are of two types, interchromosomal, which are rearrangements that involve exchange between loci located on different chromosomes, and intrachromosomal, which are rearrangements that involve loci located on the same chromosome. The type of rearrangement that typically activates a specific oncogene may be influenced by its nuclear location and that of its partner. In interphase nuclei, each chromosome occupies a distinct three-dimensional (3D) territory that tends to not overlap the territories of other chromosomes. It is also known that after double strand breaks in the genome, mobility of free DNA ends is limited. These considerations suggest that loci located deep within a chromosomal territory might not participate in interchromosomal rearrangements as readily as in intrachromosomal rearrangements. To test this hypothesis, we used fluorescence in situ hybridization with 3D high-resolution confocal microscopy to analyze the positions of six oncogenes known to be activated by recombination in human cancer cells. We found that loci involved in interchromosomal rearrangements were located closer to the periphery of chromosome territories as compared with the loci that were involved in intrachromosomal inversions. The results of this study provide evidence suggesting that nuclear architecture and location of specific genetic loci within chromosome territories may influence their participation in intrachromosomal or interchromosomal rearrangements in human thyroid cells. © 2008 Wiley-Liss, Inc. [source]


How to keep V(D)J recombination under control

IMMUNOLOGICAL REVIEWS, Issue 1 2004
Marjorie A. Oettinger
Summary:, Breaking apart chromosomes is not a matter to be taken lightly. The possible negative outcomes are obvious: loss of information, unstable chromosomes, chromosomal translocations, tumorigenesis, or cell death. Utilizing DNA rearrangement to generate the desired diversity in the antigen receptor loci is a risky business, and it must be carefully controlled. In general, the regulation is so precise that the negative consequences are minimal or not apparent. They are visible only when the process of V(D)J recombination goes awry, as for example in some chromosomal translocations associated with lymphoid tumors. Regulation is imposed not only to prevent the generation of random breaks in the DNA, but also to direct rearrangement to the appropriate locus or subregion of a locus in the appropriate cell at the appropriate time. Antigen receptor rearrangement is regulated essentially at four different levels: expression of the RAG1/2 recombinase, intrinsic biochemical properties of the recombinase and the cleavage reaction, the post-cleavage /DNA repair stage of the process, and accessibility of the substrate to the recombinase. Within each of these broad categories, multiple mechanisms are used to achieve the desired aims. The major focus of this review is on accessibility control and the role of chromatin and nuclear architecture in achieving this regulation, although other issues are touched upon. [source]


Co-localization of PARP-1 and lamin B in the nuclear architecture: A halo-fluorescence- and confocal-microscopy study

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2005
Melita Vidakovi
Abstract A functional interaction between poly(ADP-ribose) polymerase-1 (PARP-1) and lamin B has recently been proposed by nuclear fractionation, crosslinking, and immunoprecipitation experiments. Here we use fluorescence microscopy to verify and extend these findings. We analyze nuclear halo preparations by fluorescence in situ immuno staining (FISIS), which shares attributes with traditional nuclear fractionation techniques, and by confocal laser scanning microscopy (CLSM). The results agree in that a major part of the enzyme co-localizes with lamin B under physiological conditions, where PARP-1 only has basal activity. After DNA damage and the associated activation of PARP-1, and during the subsequent entry into apoptosis, dramatic changes occur: a gradual release of the enzyme from the lamina, accompanied by its accumulation in nucleoli. Our observations are in line with biochemical evidence for lamin B-PARP-1 interactions under physiological conditions and suggest ways by which these interactions are modified to support PARP-functions in damage and its fate in apoptosis. © 2005 Wiley-Liss, Inc. [source]


Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata

THE PLANT JOURNAL, Issue 5 2006
Alexandre Berr
Summary In contrast to the situation described for mammals and Drosophila, chromosome territory (CT) arrangement and somatic homologous pairing in interphase nuclei of Arabidopsis thaliana (n = 5) are predominantly random except for a more frequent association of the chromosomes bearing a homologous nucleolus organizer region. To find out whether this chromosome arrangement is also characteristic for other species of the genus Arabidopsis, we investigated Arabidopsis lyrata ssp. lyrata (n = 8), one of the closest relatives of A. thaliana. First, we determined the size of each chromosome and chromosome arm, the sequence type of centromeric repeats and their distribution between individual centromeres and the position of the 5S/45S rDNA arrays in A. lyrata. Then we demonstrated that CT arrangement, homologous pairing and sister chromatid alignment of distinct euchromatic and/or heterochromatic regions within A. lyrata interphase nuclei are similar to that in A. thaliana nuclei. Thus, the arrangement of interphase chromosomes appears to be conserved between both taxa that diverged about 5 million years ago. Since the chromosomes of A. lyrata resemble those of the presumed ancestral karyotype, a similar arrangement of interphase chromosomes is also to be expected for other closely related diploid species of the Brassicaceae family. [source]


Does CTCF mediate between nuclear organization and gene expression?

BIOESSAYS, Issue 1 2010
Rolf Ohlsson
Abstract The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions. [source]