Home About us Contact | |||
Novel Treatment Strategies (novel + treatment_strategy)
Selected AbstractsDistinctive IGH gene segment usage and minimal residual disease detection in infant acute lymphoblastic leukaemiasBRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2005Aihong Li Summary Infant acute lymphoblastic leukaemia (ALL) represents a rare but unique subset with poor prognosis. We analysed mixed-lineage leukaemia (MLL) gene rearrangements and the sequences of complete and incomplete immunoglobulin heavy chain gene rearrangements (IGH) in 14 infants (age ,12 months at diagnosis) enrolled on Dana-Farber Cancer Institute ALL Consortium Protocol 95,01. The dynamics of the leukaemic clone were followed during the course of the disease by quantitative real-time polymerase chain reaction of IGH rearrangements. Sixteen sequences were obtained from 13 (93%) of these infants. There was marked over usage of the VH6.1 gene segment (64%) in infants compared with older children with ALL (8%), (P < 0·001) and overusage of DH6 (P = 0·004) and JH1 (P = 0·004). Poor outcome was associated with MLL gene rearrangements rather than any specific VHDHJH gene usage patterns. Levels of minimal residual disease (MRD) at the end of induction appeared to be high in infants with ALL compared with older children, and although the number of infant cases studied was small, there were no differences in MRD levels after induction therapy in infant ALL with or without MLL gene rearrangements (P = 0·41) and quantitative MRD assessment at the early time points may not be predictive of outcome. Novel treatment strategies are required to improve the outcome in this poor prognosis subset of children with ALL. [source] Endothelin receptor selectivity in chronic kidney disease: rationale and review of recent evidenceEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2009W. Neuhofer Abstract Endothelin (ET) is a potent vasoconstrictory peptide with proinflammatory and profibrotic properties that exerts its biological effects through two pharmacologically distinct receptor subtypes, namely ETA and ETB. In addition to its substantial contribution to normal renal function, a large body of evidence suggests that derangement of the renal ET system is involved in the initiation and progression of chronic kidney disease (CKD) in diabetes, hypertension and glomerulonephritis. Thus, the use of ET receptor antagonists (ERAs) may offer potential novel treatment strategies in CKD. Recent literature on the role of the renal ET system in the healthy kidney was reviewed. In addition, an unbiased PubMed search was performed for studies published during the last 5 years that addressed the effects of ERAs in CKD. A particular objective was to extract information regarding whether selective or nonselective ERAs may have therapeutic potential in humans. ET-1 acts primarily as an autocrine or paracrine factor in the kidney. In normal physiology, ET-1 promotes diuresis and natriuresis by local production and action through ETB receptors in the renal medulla. In pathology, ET-1 mediates vasoconstriction, mesangial-cell proliferation, extracellular matrix production and inflammation, effects that are primarily conveyed by ETA receptors. Results obtained in animal models and in humans with the use of ERAs in CKD are encouraging; nevertheless, it is still under debate which receptor subtype should be targeted. According to most studies, selective inhibition of ETA receptors appears superior compared with nonselective ERAs because this approach does not interfere with the natriuretic, antihypertensive and ET clearance effects of ETB receptors. Although preliminary data in humans are promising, the potential role of ERAs in patients with CKD and the question of which receptor subtype should be targeted can only be clarified in randomized clinical trials. [source] From collagen chemistry towards cell therapy , a personal journeyINTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2007Michael E. Grant Summary The Fell,Muir Award requires the recipient to deliver a lecture and a review manuscript which provides a personal overview of significant scientific developments in the field of matrix biology over the period of the recipient's career. In this context, this review considers the collagen family of structural proteins and the advances in biochemical, molecular biological and genetic techniques which led to the elucidation of the structure, synthesis and function of this important group of extracellular matrix constituents. Particular attention is focussed on early research on the identification and assembly of the soluble precursors of collagen types I and II, and the identification of the precursor of basement membrane collagen type IV. In subsequent studies investigating the maintenance of the chick chondrocyte phenotype in culture, the influence of the extracellular milieu was found to influence markedly both cell morphology and collagen gene expression. These studies led to the discovery of collagen type X whose expression is restricted to hypertrophic chondrocytes at sites of endochondral ossification. Such research provided a prelude to investigations of mammalian endochondral ossification which is known to be aberrant in a variety of human chondrodysplasias and is reactivated in bone fracture repair and in osteoarthritis. The cloning of bovine and then human collagen type X genes facilitated studies in relevant human diseases and contributed to the discovery of mutations in the COL10A1 gene in families with metaphyseal chondrodysplasia type Schmid. Clustering of mutations in the C-terminal domain of the type X collagen molecule has now been widely documented and investigations of the pathogenic mechanisms in animal models are beginning to suggest the prospect of novel treatment strategies. [source] Role of the Bone Marrow Microenvironment in Multiple Myeloma,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2002G. David Roodman M.D., Ph.D. Abstract On June 26,27, 2001, the Sixth Research Roundtable in Multiple Myeloma, entitled "The Role of the Bone Microenvironment in Multiple Myeloma," was held and focused on the biology of cell-to-cell interactions, the mediators of bone disease, and novel treatment strategies for myeloma. Studies on cell-cell interactions showed that vascular cell adhesion molecule 1, expressed by local endothelial and stromal cells, binds to tumor cell surface integrins in which expression may be increased by tumor cell-derived chemokines such as macrophage inflammatory protein (MIP) 1,. These adhesive interactions increase production and release of vascular endothelial growth factor (VEGF). Studies on myeloma bone disease showed the ligand for receptor activator of nuclear transcription factor-,B (RANKL) was expressed on tumor cells and stromal cells associated with myeloma cells and was critical for osteoclast-induced osteolysis. Blockade of RANKL suppressed osteoclast maturation, bone resorption, and tumor development. Bisphosphonates, in addition to reducing osteoclast mobility and inducing osteoclast apoptosis, also decreased tumor cell adhesion to stroma. Immunomodulatory drugs such as thalidomide analogues targeted these tumor cell-stromal cell interactions, blocking both secretion of cytokines and activation of intracellular signaling pathways required for tumor survival and growth. These agents induced tumor cell apoptosis, decreased neovascularization, and potentiated natural killer cell activity. The proteasome inhibitor PS-341 also prevented expression of adhesion molecules and cytokines and triggered tumor cell apoptosis, even in drug-resistant cell lines, while showing minimal activity in healthy cells. In addition, potential therapeutic agents under investigation, which included RANKL antagonists, protein prenylation inhibitors, and osteoblast growth factors, were discussed. [source] Exercise Neuroprotection in a Rat Model of Binge Alcohol ConsumptionALCOHOLISM, Issue 3 2010J. Leigh Leasure Background:, Excessive alcohol intake produces structural and functional deficits in corticolimbic pathways that are thought to underlie cognitive deficits in the alcohol use disorders (AUDs). Animal models of binge alcohol administration support the direct link of high levels of alcohol consumption and neurotoxicity in the hippocampus and surrounding cortex. In contrast, voluntary wheel running enhances hippocampal neurogenesis and generally promotes the health of neurons. Methods:, We investigated whether voluntary exercise prior to binge alcohol exposure could protect against alcohol-induced cell loss. Female Long-Evans rats exercised voluntarily for 14 days before undergoing 4 days of binge alcohol consumption. Brains were harvested immediately after the last dose of alcohol and examined for various histological markers of neurodegeneration, including both cell death (FluoroJade B) and cell birth (Ki67) markers. Results:, Rats that exercised prior to binge exposure were significantly less behaviorally intoxicated, which was not a result of enhanced hepatic metabolism. Rats that exercised prior to binge alcohol consumption had reduced loss of dentate gyrus granule cells and fewer FluoroJade B positive cells in the dentate gyrus and associated entorhinal-perirhinal cortex compared to nonexercisers. However, exercise did not protect against cell death in the piriform cortex nor protect against alcohol-induced decreases in cell proliferation, evidenced by a similar alcohol-induced reduction in Ki67 labeled cells between exercise and sedentary rats. Conclusions:, We conclude that exercise can reduce behavioral sensitivity to ethanol intoxication and protect vulnerable brain areas from alcohol-induced cell death. Exercise neuroprotection of alcohol-induced brain damage has important implications in understanding the neurobiology of the AUDs as well as in developing novel treatment strategies. [source] Liver injury and liver protection: mechanisms and novel treatment strategiesLIVER INTERNATIONAL, Issue 8 2006ALEXANDER L. GERBES [source] The host,parasite neuroimmunoendocrine network in schistosomiasis: consequences to the host and the parasitePARASITE IMMUNOLOGY, Issue 12 2007J. MORALES-MONTOR SUMMARY The physiological interactions during the course of any immune response are complex. Infection induces antigen-specific recognition by the immune system, which is consequently charged with the responsibility of marshalling the appropriate effector responses necessary to destroy the pathogen, or at the very least inhibit its progression. Obviously, the immune system should accomplish this while minimizing collateral damage to the host or it risks, winning a Pyrrhic victory. As our understanding of the neuroendocrine system grows, it has become increasingly clear that this complex network of neurotransmitters, hormones and cytokines plays an important role in mediating immunity. Schistosomes present an especially complex relationship between pathogen and these physiological systems, with hormonally dependent host factors such as sex and age correlated with parasite success. In this report, we review the current literature on sex and age associations between infection and progression of disease. We then follow with a discussion on interactions between the host neuroendocrine and immune systems. We also speculate on strategies to apply this knowledge to novel treatment strategies. Results argue for a complex network comprising the immune, endocrinological and nervous systems of both host and schistosome in the regulation of the plural outcomes of infection. [source] Understanding anger and aggressionPROGRESS IN NEUROLOGY AND PSYCHIATRY, Issue 4 2008Mark Greener Anger and aggression are part of the human condition, but problems can arise when they run out of control. Mark Greener reports on some recent studies that are helping to increase our understanding of these behaviours and offer the prospect of developing novel treatment strategies. Copyright © 2008 Wiley Interface Ltd [source] Research Review: Cholinergic mechanisms, early brain development, and risk for schizophreniaTHE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 5 2010Randal G. Ross The onset of diagnostic symptomology for neuropsychiatric diseases is often the end result of a decades-long process of aberrant brain development. Identification of novel treatment strategies aimed at normalizing early brain development and preventing mental illness should be a major therapeutic goal. However, there are few models for how this goal might be achieved. This review uses the development of a psychophysiological correlate of attentional deficits in schizophrenia to propose a developmental model with translational primary prevention implications. Review of genetic and neurobiological studies suggests that an early interaction between ,7 nicotinic receptor density and choline availability may contribute to the development of schizophrenia-associated attentional deficits. Therapeutic implications, including perinatal dietary choline supplementation, are discussed. [source] Analysis of the function, expression, and subcellular distribution of human tristetraprolinARTHRITIS & RHEUMATISM, Issue 5 2002Seth A. Brooks Objective The zinc-finger protein tristetraprolin (TTP) has been demonstrated to regulate tumor necrosis factor , (TNF,) messenger RNA (mRNA) instability in murine macrophages. We sought to develop a model system to characterize the effects of human TTP (hTTP) on TNF, 3,-untranslated region (3,-UTR)-mediated expression. We also generated a specific polyclonal antibody against hTTP that enabled the examination of the subcellular distribution of hTTP and its RNA binding in vivo. Methods Transfection of reporter gene constructs were used to functionally characterize the role of hTTP in regulating TNF, expression in a 3,-UTR-dependent manner. An immunoprecipitation reverse transcription-polymerase chain reaction technique, immunoblotting, immunocytochemistry, and sucrose density fractionation were used to identify and localize hTTP. Results We found that hTTP interacted with human TNF, mRNA in the cytoplasm. The presence of the TNF, 3,-UTR was sufficient to confer binding by TTP in vivo. This interaction resulted in reduced luciferase reporter gene activity in a TNF, 3,-UTR adenine-uridine-rich element (ARE)-dependent manner. Immunoblotting and immunocytochemistry indicated that endogenous and transfected hTTP localized to the cytoplasm. Results of sucrose density fractionation studies were consistent with a polysomal location of hTTP. In rheumatoid synovium, hTTP expression was restricted to cells in the synovial lining layers. Conclusion Through the development of an antiserum specific for hTTP, we have been able to demonstrate that hTTP binds specifically to the TNF, 3,-UTR and reduces reporter gene expression in an ARE-specific manner. These studies establish that hTTP is likely to function in a similar, if not identical manner, in the posttranscriptional regulation of TNF,. Understanding the posttranscriptional regulation of TNF, biosynthesis is important for the development of novel treatment strategies in rheumatoid arthritis. [source] Proteome mapping of overexpressed membrane-enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of Leishmania donovaniBRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 4 2010Awanish Kumar WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Over 60% of patients with visceral leishmaniasis (VL) in India and Sudan have become unresponsive to treatment with pentavalent antimonials, the first line of drugs for over 60 years. The drug resistance mechanism, studied so far in in vitro selected laboratory strains, has been attributed to various biochemical parameters. The resistance to Sb (V) in Leishmania field isolates is still unexplored. WHAT THIS STUDY ADDS In order to elucidate for the first time the mechanism of drug resistance in field isolates, this study was done in those clinically relevant field isolates which were either responsive or non responsive to SAG. A comparison of proteome profiles of membrane-enriched as well as cytosolic protein fractions of these isolates has pinpointed the multiple overexpressed proteins in resistant isolates. This study has indicated their possible essential role in antimony resistance of the parasite and provides a vast field to be exploited to find much needed novel treatment strategies against VL. AIMS This study aimed to identify differentially overexpressed membrane-enriched as well as cytosolic proteins in SAG sensitive and resistant clinical strains of L. donovani isolated from VL patients which are involved in the drug resistance mechanism. METHODS The proteins in the membrane-enriched as well as cytosolic fractions of drug-sensitive as well as drug-resistant clinical isolates were separated using two-dimensional gel electrophoresis and overexpressed identified protein spots of interest were excised and analysed using MALDI-TOF/TOF. RESULTS Six out of 12 overexpressed proteins were identified in the membrane-enriched fraction of the SAG resistant strain of L. donovani whereas 14 out of 18 spots were identified in the cytosolic fraction as compared with the SAG sensitive strain. The major proteins in the membrane-enriched fraction were ABC transporter, HSP-83, GPI protein transamidase, cysteine,leucine rich protein and 60S ribosomal protein L23a whereas in the cytosolic fraction proliferative cell nuclear antigen (PCNA), proteasome alpha 5 subunit, carboxypeptidase, HSP-70, enolase, fructose-1,6-bisphosphate aldolase, tubulin-beta chain have been identified. Most of these proteins have been reported as potential drug targets, except 60S ribosomal protein L23a and PCNA which have not been reported to date for their possible involvement in drug resistance against VL. CONCLUSION This study for the first time provided a cumulative proteomic analysis of proteins overexpressed in drug resistant clinical isolates of L. donovani indicating their possible role in antimony resistance of the parasite. Identified proteins provide a vast field to be exploited for novel treatment strategies against VL such as cloning and overexpression of these targets to produce recombinant therapeutic/prophylactic proteins. [source] The molecular cell biology of head and neck cancer with clinical applicationsCLINICAL OTOLARYNGOLOGY, Issue 5 2004Section 1: Fundamental biology, the basis of cancer This article addresses the subject of the fundamental workings of the cell. The essential mechanisms that underlie life are discussed and explained as succinctly as intelligibility will allow and the basic principles of molecular and cell biology detailed. In preparing this article I have made reference not only to standard works but also to the most recent research. In the article I attempt to provide both the surgical and medical head and neck oncologist with the basic insights into fundamental oncology necessary to understand and treat the clinical conditions that are head and neck cancer. In addition I hope it will facilitate the understanding of the various evolving novel treatment strategies. [source] Cognitive enhancement as a pharmacotherapy target for stimulant addictionADDICTION, Issue 1 2010Mehmet Sofuoglu ABSTRACT Background No medications have been proven to be effective for cocaine and methamphetamine addiction. Attenuation of drug reward has been the main strategy for medications development, but this approach has not led to effective treatments. Thus, there is a need to identify novel treatment targets in addition to the brain reward system. Aim To propose a novel treatment strategy for stimulant addiction that will focus on medications enhancing cognitive function and attenuating drug reward. Methods Pre-clinical and clinical literature on potential use of cognitive enhancers for stimulant addiction pharmacotherapy was reviewed. Results and conclusions Cocaine and methamphetamine users show significant cognitive impairments, especially in attention, working memory and response inhibition functions. The cognitive impairments seem to be predictive of poor treatment retention and outcome. Medications targeting acetylcholine and norepinephrine are particularly well suited for enhancing cognitive function in stimulant users. Many cholinergic and noradrenergic medications are on the market and have a good safety profile and low abuse potential. These include galantamine, donepezil and rivastigmine (cholinesterase inhibitors), varenicline (partial nicotine agonist), guanfacine (alpha2 -adrenergic agonist) and atomoxetine (norepinephrine transporter inhibitor). Future clinical studies designed optimally to measure cognitive function as well as drug use behavior would be needed to test the efficacy of these cognitive enhancers for stimulant addiction. [source] ,-melanocyte,stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma?ARTHRITIS & RHEUMATISM, Issue 2 2009Agatha Kokot Objective Recently, we found that human dermal fibroblasts (HDFs) express melanocortin 1 receptors (MC-1R) that bind ,-melanocyte,stimulating hormone (,-MSH). In search of novel therapies for scleroderma (systemic sclerosis [SSc]), we used the bleomycin (BLM) model to investigate the effects of ,-MSH on collagen synthesis and fibrosis. Methods Collagen expression in HDFs was determined by real-time reverse transcription,polymerase chain reaction (RT-PCR) and Western blot analyses. Signal transduction studies included pharmacologic blockade, immunofluorescence analysis, Western blotting, and reporter,promoter assays. Oxidative stress was measured by fluorescence-activated cell sorter analysis, and anti,oxidative enzyme levels were determined by real-time RT-PCR and Western blot analyses. The effect of ,-MSH in the BLM mouse model of scleroderma was assessed by histologic, immunohistochemical, real-time RT-PCR, and protein analyses. Expression of MC-1R and pro-opiomelanocortin (POMC) in skin and HDF samples from patients with SSc was determined by RT-PCR and compared with that in samples from normal controls. Results Treatment with ,-MSH (and related peptides) suppressed BLM-induced expression of type I and type III collagen in HDFs, and this effect was cAMP-dependent. Neither BLM nor ,-MSH altered Smad signaling, but antioxidants inhibited BLM-induced collagen expression in vitro. In addition, ,-MSH suppressed BLM-induced oxidative stress and enhanced the expression of superoxide dismutase 2 (SOD2) and heme oxygenase 1 (HO-1). In the BLM mouse model, ,-MSH reduced skin fibrosis and collagen content and increased tissue levels of SOD2 and HO-1. In skin and HDFs from patients with SSc, both MC-1R and POMC messenger RNAs were detected, but there were no differences compared with healthy controls. Conclusion Alpha-melanocyte,stimulating hormone and related peptides that exert their effects via MC-1R may provide a novel antifibrogenic therapeutic tool for the treatment of fibrotic diseases such as scleroderma. [source] |