Home About us Contact | |||
Northern South America (northern + south_america)
Selected AbstractsGEOGRAPHIC VARIATION OF GENETIC AND BEHAVIORAL TRAITS IN NORTHERN AND SOUTHERN TÚNGARA FROGSEVOLUTION, Issue 8 2006Heike Pröhl Abstract We use a combination of microsatellite marker analysis and mate-choice behavior experiments to assess patterns of reproductive isolation of the túngara frog Physalaemus pustulosus along a 550-km transect of 25 populations in Costa Rica and Panama. Earlier studies using allozymes and mitochondrial DNA defined two genetic groups of túngara frogs, one ranging from Mexico to northern Costa Rica (northern group), the second ranging from Panama to northern South America (southern group). Our more fine-scale survey also shows that the northern and southern túngara frogs are genetically different and geographically separated by a gap in the distribution in central Pacific Costa Rica. Genetic differences among populations are highly correlated with geographic distances. Temporal call parameters differed among populations as well as between genetic groups. Differences in calls were explained better by geographic distance than by genetic distance. Phonotaxis experiments showed that females preferred calls of males from their own populations over calls of males from other populations in about two-thirds to three-fourths of the contrasts tested. In mating experiments, females and males from the same group and females from the north with males from the south produced nests and tadpoles. In contrast, females from the south did not produce nests or tadpoles with males from the north. Thus, northern and southern túngara frogs have diverged both genetically and bioacoustically. There is evidence for some prezygotic isolation due to differences in mate recognition and fertilization success, but such isolation is hardly complete. Our results support the general observation that significant differences in sexual signals are often not correlated with strong genetic differentiation. [source] A 10-year decrease in plant species richness on a neotropical inselberg: detrimental effects of global warming?GLOBAL CHANGE BIOLOGY, Issue 10 2009EMILE FONTY Abstract The census of vascular plants across a 10-year interval (1995,2005) at the fringe of a neotropical rainforest (Nouragues inselberg, French Guiana, South America) revealed that species richness decreased, both at quadrat scale (2 m2) and at the scale of the inselberg (three transects, embracing the whole variation in community composition). Juvenile stages of all tree and shrub species were most severely affected, without any discrimination between life and growth forms, fruit and dispersion types, or seed sizes. Species turnover in time resulted in a net loss of biodiversity, which was inversely related to species occurrence. The most probable cause of the observed species disappearance is global warming, which severely affected northern South America during the last 50 years (+2 °C), with a concomitant increase in the occurrence of aridity. [source] The biogeography of Gunnera L.: vicariance and dispersalJOURNAL OF BIOGEOGRAPHY, Issue 7 2003Livia Wanntorp Abstract Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty-six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well-known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade. [source] Pollen- and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, ColombiaJOURNAL OF QUATERNARY SCIENCE, Issue 1 2003Maria Isabel Vélez Abstract The late Pleistocene,Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene-7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake-levels were low and the area was surrounded by paramo and subparamo vegetation. Late-glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake-level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late-glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake-level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd. [source] |