Home About us Contact | |||
Northern Range Limits (northern + range_limit)
Selected AbstractsVoltinism flexibility of a riverine dragonfly along thermal gradientsGLOBAL CHANGE BIOLOGY, Issue 3 2008ERIK BRAUNE Abstract Potential effects of future warming should be reflected in life history patterns of aquatic organisms observed in warmer climates or in habitats that are different in ambient temperature. In the special case of the dragonfly Gomphus vulgatissimus (L.) (Odonata: Gomphidae) previous research suggests that voltinism decreases from south to north. We analysed data on voltinism from 11 sample sites along a latitudinal gradient from about 44°N to 53°N, comprising small streams to medium-sized rivers. Furthermore, to simulate different conditions and to allow projections for future climate change scenarios, we developed a population dynamic model based on a projection matrix approach. The parameters of the model are dependent on temperature and day length. Our field results indicate a decrease in voltinism along the latitudinal gradient from southern to northern Europe and a corresponding increase of voltinism with higher temperatures. An increase in voltinism with width of the running water implies an effect of varying habitat temperature. Under the impact of global warming, our model predicts an increased development speed, particularly in the northern part of the latitudinal gradient, an extension of the northern range limit and changes in phenology of G. vulgatissimus, leading to an extension of the flight season in certain regions along the gradient. [source] Modelling past and present geographical distribution of the marine gastropod Patella rustica as a tool for exploring responses to environmental changeGLOBAL CHANGE BIOLOGY, Issue 10 2007FERNANDO P. LIMA Abstract A climate envelope approach was used to model the distributions of the intertidal gastropod Patella rustica, to test the robustness of forecast responses to climate change. The model incorporated variables that were likely to determine the abundance and the northern range limit of this species in the NE Atlantic. The model was built using classification and regression tree analysis (CART) trained with historical distribution data from the mid 1950s and a set of corresponding climatic and oceanographic variables. Results indicated air and sea temperature, in particular during the reproductive and settlement periods, as the main determinants of the Atlantic distribution of P. rustica. The model was subsequently fed with contemporary climatic data and its output was compared with the current distribution and abundance of P. rustica, assessed during a 2002,2003 survey. The model correctly hindcasted the recent collapse of a distributional gap in northern Portugal, as well as an increase in abundance at locations within its range. The predicted northward expansion of the northern range limit did not occur because the absence of the species was confirmed in a survey encompassing the whole Atlantic French coast up to Brest. Stretches of unsuitable habitat too long to be overcome by dispersal are the likely mechanism controlling the northern limit of the distribution of this intertidal species. [source] Inferring long-distance dispersal and topographic barriers during post-glacial colonization from the genetic structure of red maple (Acer rubrum L.) in New EnglandJOURNAL OF BIOGEOGRAPHY, Issue 9 2008Paul F. Gugger Abstract Aim, This study aims to assess the role of long-distance seed dispersal and topographic barriers in the post-glacial colonization of red maple (Acer rubrum L.) using chloroplast DNA (cpDNA) variation, and to understand whether this explains the relatively higher northern diversity found in eastern North American tree species compared with that in Europe. Location, North-eastern United States. Methods, The distribution of intraspecific cpDNA variation in temperate tree populations has been used to identify aspects of post-glacial population spread, including topographic barriers to population expansion and spread by long-distance seed dispersal. We sequenced c. 370 cpDNA base pairs from 221 individuals in 100 populations throughout the north-eastern United States, and analysed spatial patterns of diversity and differentiation. Results, Red maple has high genetic diversity near its northern range limit, but this diversity is not partitioned by topographic barriers, suggesting that the northern Appalachian Mountains were not a barrier to the colonization of red maple. We also found no evidence of the patchy genetic structure that has been associated with spread by rare long-distance seed dispersal in previous studies. Main conclusions, Constraints on post-glacial colonization in eastern North America seem to have been less stringent than those in northern Europe, where bottlenecks arising from long-distance colonization and topographic barriers appear to have strongly reduced genetic diversity. In eastern North America, high northern genetic diversity may have been maintained by a combination of frequent long-distance dispersal, minor topographic obstacles and diffuse northern refugia near the ice sheet. [source] Threatened Peripheral Populations in Context: Geographical Variation in Population Frequency and Size and Sexual Reproduction in a Clonal Woody ShrubCONSERVATION BIOLOGY, Issue 3 2007SARAH B. YAKIMOWSKI especies en riesgo; límites de distribución; poblaciones periféricas; reproducción sexual; Vaccinium stamineum Abstract:,Geographically peripheral populations of widespread species are often the focus of conservation because they are locally rare within political jurisdictions. Yet the ecology and genetics of these populations are rarely evaluated in a broader geographic context. Most expectations concerning the ecology and evolution of peripheral populations derive from the abundant-center model, which predicts that peripheral populations should be less frequent, smaller, less dense, and have a lower reproductive rate than central populations. We tested these predictions and in doing so evaluated the conservation value of peripheral populations for the clonal shrub Vaccinium stamineum L. (Ericaceae, deerberry), which is listed as threatened in Canada. Based on 51 populations sampled from the center to the northern range limits over 2 years, population frequency and size declined toward the range limit, but ramet density increased. Sexual reproductive output varied widely among populations and between years, with many populations producing very few seeds, but did not decline toward range margins. In fact seed mass increased steadily toward range limit, and this was associated with faster germination and seedling growth, which may be adaptive in seasonal northern environments. Our results did not support the prediction that clonal reproduction is more prevalent in peripheral populations or that it contributed antagonistically to the wide variation in seed production. Peripheral populations of V. stamineum are as productive as central populations and may be locally adapted to northern environments. This emphasizes the importance of a broad geographical perspective for evaluating the ecology, evolution, and conservation of peripheral populations. Resumen:,Las poblaciones geográficamente periféricas de una especie de amplia distribución a menudo son el foco de conservación porque son raras localmente dentro de jurisdicciones políticas. Sin embargo, la ecología y genética de estas poblaciones son evaluadas poco frecuentemente en un contexto geográfico más amplio. La mayoría de las expectaciones relacionadas con la ecología y evolución de las poblaciones periféricas se derivan del modelo centro-abundante, que predice que las poblaciones periféricas son menos frecuentes, más pequeñas, menos densas y menor tasa reproductiva que poblaciones centrales. Probamos estas predicciones y al hacerlo evaluamos el valor de conservación de poblaciones periféricas de una especie de arbusto clonal (Vaccinium stamineum L., Ericaceae), que está enlistada como amenazada en Canadá. Con base en 51 poblaciones muestreadas del centro hacia los límites norteños de su distribución durante 2 años, la frecuencia y tamaño poblacional declinó hacia los límites de su distribución, pero la densidad de rametos aumentó. La reproducción sexual varió ampliamente entre las poblaciones y entre años, con muchas poblaciones produciendo muy pocas semillas, pero no declinó hacia los límites de su distribución. De hecho, la masa de semillas incrementó sostenidamente hacia los límites, y esto se asoció a una acelerada germinación y crecimiento de plántulas, lo cual puede ser adaptativo en ambientes norteños estacionales. Nuestros resultados no sustentaron la predicción de que la reproducción clonal es más prevaleciente en poblaciones periféricas o que contribuye antagónicamente a la amplia variación en la producción de semillas. Las poblaciones periféricas de V. stamineum son tan productivas como las poblaciones centrales y pueden estar adaptadas localmente a ambientes norteños. Esto enfatiza la importancia de una perspectiva geográfica amplia cuando se evalúa la ecología, evolución y conservación de poblaciones periféricas. [source] The Indochinese,Sundaic zoogeographic transition: a description and analysis of terrestrial mammal species distributionsJOURNAL OF BIOGEOGRAPHY, Issue 5 2009David S. Woodruff Abstract Aim, We describe the distributions of mammal species between the Indochinese and Sundaic subregions and examine the traditional view that the two faunas show a transition near the Isthmus of Kra on the Thai,Malay peninsula. Location, Species distributions are described along a 2000-km transect from 20° N (northernmost Thailand) to 1° N (Singapore). Methods, For the 325 species of native non-marine mammals occurring along the transect we used published records to provide a database of their distributional records by degree of latitude. Results, Along the transect we found 128 Indochinese species with southern range limits, 121 Sundaic species with northern range limits, four un-assignable endemics and 72 widespread species. In total, 152 southern and 147 northern range limits were identified, and their distribution provides no evidence for a narrow faunal transition near the Isthmus of Kra (10°30, N) or elsewhere. Range limits of both bats and non-volant mammals cluster in northernmost peninsular Malaysia (5° N) and 800 km further north, where the peninsula joins the continent proper (14° N). The clusters of northern and southern range limits are not concordant but overlap by 100,200 km. Similarly, the range limits of bats and non-volant mammals cluster at slightly different latitudes. There are 30% fewer species and range limits in the central and northern peninsula (between 6 and 13° N), and 35 more widely distributed species have range gaps in this region. In addition, we found 70 fewer species at the southern tip of the peninsula (1° N) than at 3,4° N. Main conclusions, The deficiencies of both species and species range limits in the central and northern peninsula are attributed to an area effect caused by repeated sea-level changes. Using a new global glacioeustatic curve developed by Miller and associates we show that there were > 58 rapid sea-level rises of > 40 m in the last 5 Myr that would have resulted in significant faunal compression and local population extirpation in the narrow central and northern parts of the peninsula. This new global sea-level curve appears to account for the observed patterns of the latitudinal diversity of mammal species, the concentration of species range limits north and south of this area, the nature and position of the transition between biogeographical subregions, and possibly the divergence of the faunas themselves during the Neogene. The decline of species diversity at the southern end of the transect is attributed to a peninsula effect similar to that described elsewhere. [source] Climatic limits for the present distribution of beech (Fagus L.) species in the worldJOURNAL OF BIOGEOGRAPHY, Issue 10 2006Jingyun Fang Abstract Aim, Beech (Fagus L., Fagaceae) species are representative trees of temperate deciduous broadleaf forests in the Northern Hemisphere. We focus on the distributional limits of beech species, in particular on identifying climatic factors associated with their present range limits. Location, Beech species occur in East Asia, Europe and West Asia, and North America. We collated information on both the southern and northern range limits and the lower and upper elevational limits for beech species in each region. Methods, In total, 292 lower/southern limit and 310 upper/northern limit sites with available climatic data for all 11 extant beech species were collected by reviewing the literature, and 13 climatic variables were estimated for each site from climate normals at nearby stations. We used principal components analysis (PCA) to detect climatic variables most strongly associated with the distribution of beech species and to compare the climatic spaces for the different beech species. Results, Statistics for thermal and moisture climatic conditions at the lower/southern and upper/northern limits of all world beech species are presented. The first two PCA components accounted for 70% and 68% of the overall variance in lower/southern and upper/northern range limits, respectively. The first PCA axis represented a thermal gradient, and the second a moisture gradient associated with the world-wide distribution pattern of beech species. Among thermal variables, growing season warmth was most important for beech distribution, but winter low temperature (coldness and mean temperature for the coldest month) and climatic continentality were also coupled with beech occurrence. The moisture gradient, indicated by precipitation and moisture indices, showed regional differences. American beech had the widest thermal range, Japanese beeches the most narrow; European beeches occurred in the driest climate, Japanese beeches the most humid. Climatic spaces for Chinese beech species were between those of American and European species. Main conclusions, The distributional limits of beech species were primarily associated with thermal factors, but moisture regime also played a role. There were some regional differences in the climatic correlates of distribution. The growing season temperature regime was most important in explaining distribution of Chinese beeches, whilst their northward distribution was mainly limited by shortage of precipitation. In Japan, distribution limits of beech species were correlated with summer temperature, but the local dominance of beech was likely to be dependent on snowfall and winter low temperature. High summer temperature was probably a limiting factor for southward extension of American beech, while growing season warmth seemed critical for its northward distribution. Although the present distribution of beech species corresponded well to the contemporary climate in most areas, climatic factors could not account for some distributions, e. g., that of F. mexicana compared to its close relative F. grandifolia. It is likely that historical factors play a secondary role in determining the present distribution of beech species. The lack of F. grandifolia on the island of Newfoundland, Canada, may be due to inadequate growing season warmth. Similarly, the northerly distribution of beech in Britain has not reached its potential limit, perhaps due to insufficient time since deglaciation to expand its range. [source] Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora)MOLECULAR ECOLOGY, Issue 3 2009M. CORDELLIER Abstract Understanding the impact of past climatic events on species may facilitate predictions of how species will respond to future climate change. To this end, we sampled populations of the common pond snail Radix balthica over the entire species range (northwestern Europe). Using a recently developed analytical framework that employs ecological niche modelling to obtain hypotheses that are subsequently tested with statistical phylogeography, we inferred the range dynamics of R. balthica over time. A Maxent modelling for present-day conditions was performed to infer the climate envelope for the species, and the modelled niche was used to hindcast climatically suitable range at the last glacial maximum (LGM) c. 21 000 years ago. Ecological niche modelling predicted two suitable areas at the LGM within the present species range. Phylogeographic model selection on a COI mitochondrial DNA data set confirmed that R. balthica most likely spread from these two disjunct refuges after the LGM. The match observed between the potential range of the species at the LGM given its present climatic requirements and the phylogeographically inferred refugial areas was a clear argument in favour of niche conservatism in R. balthica, thus allowing to predict the future range. The subsequent projection of the potential range under a global change scenario predicts a moderate pole-ward shift of the northern range limits, but a dramatic loss of areas currently occupied in France, western Great Britain and southern Germany. [source] Dispersal limitation inferred from an experimental translocation of Lomatium (Apiaceae) species outside their geographic rangesOIKOS, Issue 12 2009Travis D. Marsico Determining limitations on poleward range expansion is important for predicting how climate change will alter the distribution of species. For most species, it is not known what factors set their distributional limits and the role dispersal limitation might play if range-limiting factors were altered. We conducted a transplant study of three related and co-occurring Lomatium species at their northern range limits to test competing hypotheses of range limitation. We added seeds to experimental plots inside and outside the species' geographic range (a regional treatment) in a replicated design with vegetation intact and vegetation reduced (a disturbance treatment) and with herbivore access and herbivore exclusion (an herbivory treatment). Germination and reemergence were measured through two growing seasons, along with community-level variables. A fully-crossed linear mixed model revealed that Lomatium survivorship outside the current range was as good or better than survivorship within the range, at least when the vegetative community remained intact. This suggests that the species are dispersal limited. Germination often was improved in the presence of an intact vegetative community, but this potentially facilitative effect was absent in second-year reemergence. Plots exposed to herbivory had slightly, but significantly, reduced germination, though reemergence did not differ between herbivore treatments. Lomatium dissectum, a rare species, had significantly lower survivorship than its congeners, suggesting that range shifts in rare taxa may be particularly difficult. Seed additions beyond species' range limits may be a strategy for overcoming dispersal limitation and assisting species in poleward migrations. [source] Climatic limits for the present distribution of beech (Fagus L.) species in the worldJOURNAL OF BIOGEOGRAPHY, Issue 10 2006Jingyun Fang Abstract Aim, Beech (Fagus L., Fagaceae) species are representative trees of temperate deciduous broadleaf forests in the Northern Hemisphere. We focus on the distributional limits of beech species, in particular on identifying climatic factors associated with their present range limits. Location, Beech species occur in East Asia, Europe and West Asia, and North America. We collated information on both the southern and northern range limits and the lower and upper elevational limits for beech species in each region. Methods, In total, 292 lower/southern limit and 310 upper/northern limit sites with available climatic data for all 11 extant beech species were collected by reviewing the literature, and 13 climatic variables were estimated for each site from climate normals at nearby stations. We used principal components analysis (PCA) to detect climatic variables most strongly associated with the distribution of beech species and to compare the climatic spaces for the different beech species. Results, Statistics for thermal and moisture climatic conditions at the lower/southern and upper/northern limits of all world beech species are presented. The first two PCA components accounted for 70% and 68% of the overall variance in lower/southern and upper/northern range limits, respectively. The first PCA axis represented a thermal gradient, and the second a moisture gradient associated with the world-wide distribution pattern of beech species. Among thermal variables, growing season warmth was most important for beech distribution, but winter low temperature (coldness and mean temperature for the coldest month) and climatic continentality were also coupled with beech occurrence. The moisture gradient, indicated by precipitation and moisture indices, showed regional differences. American beech had the widest thermal range, Japanese beeches the most narrow; European beeches occurred in the driest climate, Japanese beeches the most humid. Climatic spaces for Chinese beech species were between those of American and European species. Main conclusions, The distributional limits of beech species were primarily associated with thermal factors, but moisture regime also played a role. There were some regional differences in the climatic correlates of distribution. The growing season temperature regime was most important in explaining distribution of Chinese beeches, whilst their northward distribution was mainly limited by shortage of precipitation. In Japan, distribution limits of beech species were correlated with summer temperature, but the local dominance of beech was likely to be dependent on snowfall and winter low temperature. High summer temperature was probably a limiting factor for southward extension of American beech, while growing season warmth seemed critical for its northward distribution. Although the present distribution of beech species corresponded well to the contemporary climate in most areas, climatic factors could not account for some distributions, e. g., that of F. mexicana compared to its close relative F. grandifolia. It is likely that historical factors play a secondary role in determining the present distribution of beech species. The lack of F. grandifolia on the island of Newfoundland, Canada, may be due to inadequate growing season warmth. Similarly, the northerly distribution of beech in Britain has not reached its potential limit, perhaps due to insufficient time since deglaciation to expand its range. [source] |