Northeastern Atlantic (northeastern + atlantic)

Distribution by Scientific Domains


Selected Abstracts


BIODIVERSITY OF CORALLINE ALGAE IN THE NORTHEASTERN ATLANTIC INCLUDING CORALLINA CAESPITOSA SP.

JOURNAL OF PHYCOLOGY, Issue 1 2009
NOV. (CORALLINOIDEAE, RHODOPHYTA)
The Corallinoideae (Corallinaceae) is represented in the northeastern Atlantic by Corallina officinalis L.; Corallina elongata J. Ellis et Sol.; Haliptilon squamatum (L.) H. W. Johans., L. M. Irvine et A. M. Webster; and Jania rubens (L.) J. V. Lamour. The delimitation of these geniculate coralline red algae is based primarily on morphological characters. Molecular analysis based on cox1 and 18S rRNA gene phylogenies supported the division of the Corallinoideae into the tribes Janieae and Corallineae. Within the Janieae, a sequence difference of 46,48 bp (8.6%,8.9%) between specimens of H. squamatum and J. rubens in the cox1 phylogeny leads us to conclude that they are congeneric. J. rubens var. rubens and J. rubens var. corniculata (L.) Yendo clustered together in both phylogenies, suggesting that for those genes, there was no genetic basis for the morphological variation. Within the Corallineae, it appears that in some regions, the name C. elongata has been misapplied. C. officinalis samples formed two clusters that differed by 45,54 bp (8.4%,10.0%), indicating species-level divergence, and morphological differences were sufficient to define two species. One of these clusters was consistent with the morphology of the type specimen of C. officinalis (LINN 1293.9). The other species cluster is therefore described here as Corallina caespitosa sp. nov. This study has demonstrated that there is a clear need for a revision of the genus Corallina to determine the extent of "pseudocryptic" diversity in this group of red algae. [source]


Spatio-temporal distribution of albacore (Thunnus alalunga) catches in the northeastern Atlantic: relationship with the thermal environment

FISHERIES OCEANOGRAPHY, Issue 2 2010
Y. SAGARMINAGA
Abstract When the spring seasonal warming starts, North Atlantic albacore (Thunnus alalunga) juveniles and pre-adults perform a trophic migration to the northeastern Atlantic, to the Bay of Biscay and to the southeast of Ireland. During this migration, they are exploited by Spanish trolling and baitboat fleets. The present study analyzes the relationship between the albacore spatio-temporal distribution and the thermal environment. For this approach, several analyses have been performed on a database including fishing logbooks and sea surface temperature (SST) images, covering the period between 1987 and 2003. SST values and the SST gradients at the catch locations have been statistically compared to broader surrounding areas to test whether the thermal environment determines the spatial distribution of albacore. General additive models (GAM) have been used also to evaluate the relative importance of environmental variables and fleet behaviour. The results obtained show that, although juvenile albacore catch locations are affected by fleet dynamics, there is a close spatial and temporal relationship with the seasonal evolution of a statistically significant preferential SST window (16,18°C). However, differences have been identified between the relationship of albacore with SST within the Bay of Biscay in July and August (higher temperature). Such differences are found also in the spatial distribution of the catch locations; these reflect clearly the presence of two groups, differentiated after the third week of the fishing campaign at the end of June. The analysis undertaken relating the distribution of North Atlantic albacore juveniles with thermal gradients did not provide any evidence of a relationship between these catch locations and the nearby occurrence of thermal gradients. [source]


The eastern Mediterranean teleconnection pattern: identification and definition

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 6 2007
M. Hatzaki
Abstract In this study, an attempt is made to investigate possible teleconnection patterns of atmospheric circulation, centered over eastern Mediterranean (EM) with the aid of gridded NCEP/NCAR daily values of geopotential heights for the period 1958,2003. For this purpose, two approaches have been used: correlation analysis and rotated principal component analysis (PCA) on a seasonal and monthly basis. A teleconnection pattern between the EM and northeastern Atlantic was identified at 500 and 300 hPa in winter, which will be referred to as the Eastern Mediterranean Pattern (EMP), appearing as an independent mode of the upper circulation. The pattern also exists in autumn but is substantially weakened with its dipole centers being shifted eastwards. Significant monthly variations were found in the location, strength and structure of the pattern. The employment of a standardized index demonstrated that the negative phase of the EMP prevails throughout the year with the maximum frequency at wintertime. Copyright © 2006 Royal Meteorological Society [source]


BIODIVERSITY OF CORALLINE ALGAE IN THE NORTHEASTERN ATLANTIC INCLUDING CORALLINA CAESPITOSA SP.

JOURNAL OF PHYCOLOGY, Issue 1 2009
NOV. (CORALLINOIDEAE, RHODOPHYTA)
The Corallinoideae (Corallinaceae) is represented in the northeastern Atlantic by Corallina officinalis L.; Corallina elongata J. Ellis et Sol.; Haliptilon squamatum (L.) H. W. Johans., L. M. Irvine et A. M. Webster; and Jania rubens (L.) J. V. Lamour. The delimitation of these geniculate coralline red algae is based primarily on morphological characters. Molecular analysis based on cox1 and 18S rRNA gene phylogenies supported the division of the Corallinoideae into the tribes Janieae and Corallineae. Within the Janieae, a sequence difference of 46,48 bp (8.6%,8.9%) between specimens of H. squamatum and J. rubens in the cox1 phylogeny leads us to conclude that they are congeneric. J. rubens var. rubens and J. rubens var. corniculata (L.) Yendo clustered together in both phylogenies, suggesting that for those genes, there was no genetic basis for the morphological variation. Within the Corallineae, it appears that in some regions, the name C. elongata has been misapplied. C. officinalis samples formed two clusters that differed by 45,54 bp (8.4%,10.0%), indicating species-level divergence, and morphological differences were sufficient to define two species. One of these clusters was consistent with the morphology of the type specimen of C. officinalis (LINN 1293.9). The other species cluster is therefore described here as Corallina caespitosa sp. nov. This study has demonstrated that there is a clear need for a revision of the genus Corallina to determine the extent of "pseudocryptic" diversity in this group of red algae. [source]


Genetic divergence in the Atlantic,Mediterranean Montagu's blenny, Coryphoblennius galerita (Linnaeus 1758) revealed by molecular and morphological characters

MOLECULAR ECOLOGY, Issue 17 2007
VERA S. DOMINGUES
Abstract Coryphoblennius galerita is a small intertidal fish with a wide distribution and limited dispersal ability, occurring in the northeastern Atlantic and Mediterranean. In this study, we examined Atlantic and Mediterranean populations of C. galerita to assess levels of genetic divergence across populations and to elucidate historical and contemporary factors underlying the distribution of the genetic variability. We analyse three mitochondrial and one nuclear marker and 18 morphological measurements. The combined dataset clearly supports the existence of two groups of C. galerita: one in the Mediterranean and another in the northeastern Atlantic. The latter group is subdivided in two subgroups: Azores and the remaining northeastern Atlantic locations. Divergence between the Atlantic and the Mediterranean can be the result of historical isolation between the populations of the two basins during the Pleistocene glaciations. Present-day barriers such as the Gibraltar Strait or the ,Almeria-Oran jet' are also suggested as responsible for this isolation. Our results show no signs of local extinctions during the Pleistocene glaciations, namely at the Azores, and contrast with the biogeographical pattern that has been observed for Atlantic,Mediterranean warm-water species, in which two groups of populations exist, one including the Mediterranean and the Atlantic coast of western Europe, and another encompassing the western tropical coast of Africa and the Atlantic islands of the Azores, Madeira and Canaries. Species like C. galerita that tolerate cooler waters, may have persisted during the Pleistocene glaciations in moderately affected locations, thus being able to accumulate genetic differences in the more isolated locations such as the Azores and the Mediterranean. This study is one of the first to combine morphological and molecular markers (mitochondrial and nuclear) with variable rates of molecular evolution to the study of the relationships of the Atlantic and Mediterranean populations of a cool-water species. [source]


Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data

MOLECULAR ECOLOGY, Issue 6 2006
B. SIMON-BOUHET
Abstract Since the 1970s, the nassariid gastropod Cyclope neritea has been extending its range north along the French Atlantic coasts from the Iberian Peninsula. This may be due to natural spread because of the recent warming of the northeastern Atlantic. However, human-mediated introductions related to shellfish culture may also be a probable explanation for this sudden range expansion. To examine these two hypotheses, we carried out a comprehensive study based on mitochondrial gene sequences (cytochrome oxidase I) of the five recently colonized French bays as well as 14 populations located in the recognized native range of the species. From a total of 594 individuals, we observed 29 haplotypes to split into three divergent clades. In the native range, we observed a low molecular diversity, strong genetic structure and agreement between geography and gene genealogies. Along the French coasts, we observed the opposite: high genetic diversity and low genetic structure. Our results show that recurrent human-mediated introductions from several geographical areas in the native range may be a source for the French Atlantic populations. However, despite the low dispersal ability of C. neritea, the isolation-by-distance pattern in France suggested that this gastropod may have been present (although unnoticed) on the French Atlantic coasts before the 1970s. As C. neritea shows characteristics of a cryptogenic species, the classification of Atlantic populations as either native or introduced is not straightforward. Cryptogenic species should be studied further to determine the status of new populations close to their recognized native range. [source]


Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish

MOLECULAR ECOLOGY, Issue 13 2005
LUIZ A. ROCHA
Abstract The last tropical connection between Atlantic and Indian,Pacific habitats closed c. 2 million years ago (Ma), with the onset of cold-water upwelling off southwestern Africa. Yet comparative morphology indicates more recent connections in several taxa, including reef-associated gobies (genus Gnatholepis). Coalescence and phylogenetic analyses of mtDNA cytochrome b sequences demonstrate that Gnatholepis invaded the Atlantic during an interglacial period ,145 000 years ago (d = 0.0054), colonizing from the Indian Ocean to the western Atlantic, and subsequently to the central (,100 000 years ago) and eastern Atlantic (,30 000 years ago). Census data show a contemporary range expansion in the northeastern Atlantic linked to global warming. [source]