Northeast Japan (northeast + japan)

Distribution by Scientific Domains


Selected Abstracts


SHRIMP zircon and EPMA monazite dating of granitic rocks from the Maizuru terrane, southwest Japan: Correlation with East Asian Paleozoic terranes and geological implications

ISLAND ARC, Issue 3 2008
Masahiro Fujii
Abstract The Maizuru terrane, distributed in the Inner Zone of southwest Japan, is divided into three subzones (Northern, Central and Southern), each with distinct lithological associations. In clear contrast with the Southern zone consisting of the Yakuno ophiolite, the Northern zone is subdivided into the western and eastern bodies by a high-angle fault, recognized mainly by the presence of deformed granitic rocks and pelitic gneiss. This association suggests an affinity with a mature continental block; this is supported by the mode of occurrence, and petrological and isotopic data. Newly obtained sensitive high mass-resolution ion microprobe (SHRIMP) zircon U,Pb ages reveal the intrusion ages of 424 ± 16 and 405 ± 18 Ma (Siluro,Devonian) for the granites from the western body, and 249 ± 10 and 243 ± 19 Ma (Permo,Triassic) for the granodiorites from the eastern body. The granites in the western body also show inherited zircon ages of around 580 and 765 Ma. In addition, electron probe microanalysis (EPMA) monazite U,Th,total Pb dating gives around 475,460 Ma. The age of intrusion, inherited ages, mode of occurrence, and geological setting of the Siluro,Devonian granites of the Northern zone all show similarities with those of the Khanka Massif, southern Primoye, Russia, and the Hikami granitic rocks of the South Kitakami terrane, Northeast Japan. We propose that both the Siluro,Devonian and Permo,Triassic granitic rocks of the Northern zone are likely to have been juxtaposed through the Triassic,Late Jurassic dextral strike-slip movement, and to have originated from the Khanka Massif and the Hida terrane, respectively. This study strongly supports the importance of the strike-slip movement as a mechanism causing the structural rearrangement of the Paleozoic,Mesozoic terranes in the Japanese Islands, as well as in East Asia. [source]


An experimental and modeling study of Na-rich hydrothermal alteration

GEOFLUIDS (ELECTRONIC), Issue 4 2005
J. HARA
Abstract Sodic alteration assemblages including clinoptilolite, mordenite, analcime and Na-montmorillonite were locally observed in sediments in the eastern part of the Hachimantai geothermal region, northeast Japan. This study investigated the mechanisms of sodic enrichment in the sediments during alteration. Kinetic results for water/rock interaction experiments are reported here. Batch-type experiments were conducted at 150,250°C under saturated vapor pressure. Pyroclastic rocks dissolved incongruently in these experiments, and the solubility and dissolution rates among elements varied as follows: the apparent steady-state concentrations of major elements are Si > Na , K > Ca > Al and the order of the dissolution rates is Si > Al > Na , K > Ca. Na had the highest steady-state concentration and fastest dissolution rate of the alkali and alkali earth metal ions. Based on surface analysis of plagioclase, dissolution was effected via a reaction layer of Na-montmorillonite on the mineral surface. Additionally, a reaction model constructed based on the experimentally observed reaction mechanism quantitatively explains the dissolution behavior. These results show that Na-montmorillonite can be precipitated by pyroclastic rock/meteoric water interactions without seawater involvement: the Na is derived from the host rocks. [source]


Long-term changes in distribution and chemistry of middle Miocene to Quaternary volcanism in the Chokai-Kurikoma area across the Northeast Japan Arc

ISLAND ARC, Issue 1 2004
Hirofumi Kondo
Abstract To understand the characteristics of long-term spatial and temporal variation in volcanism within a volcanic arc undergoing constant subduction since the cessation of back-arc opening, a detailed investigation of middle Miocene to Quaternary volcanism was carried out within the Chokai-Kurikoma area of the Northeast Japan Arc. This study involved a survey of available literature, with new K,Ar and fission track dating, and chemical analyses. Since 14 Ma, volcanism has occurred within the Chokai-Kurikoma area in specific areas with a ,branch-like' pattern, showing an east,west trend. This is in marked contrast to the widespread distribution of volcanism with a north,south trend in the 20,14 Ma period. The east,west- trending ,branches' are characterized by regular intervals (50,100 km) of magmatism along the arc. These branches since 14 Ma are remarkably discrepant to the general northwest,southeast or north-northeast,south-southwest direction of the crustal structures that have controlled Neogene to Quaternary tectonic movements in northeast Japan. In addition, evidence indicating clustering and focusing of volcanism into smaller regions since 14 Ma was verified. Comparison of the distribution and chemistry of volcanic rocks for three principal volcanic stages (11,8, 6,3 and 2,0 Ma) revealed that widely but sparsely distributed volcanic rocks had almost the same level of alkali and incompatible element concentrations throughout the area (with the exception of Zr) in the 11,8 Ma stage. However, through the 6,3 Ma stage to the 2,0 Ma stage, the concentration level in the back-arc cluster increased, while that in the volcanic front cluster remained almost constant. Therefore, the degree of partial melting has decreased, most likely with a simultaneous increase in the depth of magma segregation within the back-arc zone, whereas within the volcanic front zone, the conditions of magma generation have changed little over the three stages. In conclusion, the evolution of the thermal structure within the mantle wedge across the arc since 14 Ma has reduced the extent of ascending mantle diapirs into smaller fields. This has resulted in the tendency for the distribution of volcanism to become localized and concentrated into more specific areas in the form of clusters from the late Miocene to Quaternary. [source]


Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild

AQUACULTURE RESEARCH, Issue 12 2007
Takahito Shikano
Abstract To understand quantitative genetic characteristics of hatchery-produced Japanese flounder in the wild, heritability and genetic correlation of growth-related and morphometric traits were examined in yearling released individuals at a coastal region in northeast Japan. Quantitative genetic parameters were estimated with restricted maximum likelihood following reconstruction of pedigree by a likelihood method using seven microsatellite loci. Estimates of heritability were 0.65 and 0.51 for growth-related traits (body length and the proportion of body length to body depth) and 0.45,0.62 for morphometric traits (vertebral count and dorsal and anal fin ray counts). Genetic correlation was significantly positive (0.61) between dorsal and anal fin ray counts, indicating the possibility of pleiotropic genes or gametic phase disequilibrium for these traits. All the estimates of heritability and genetic correlation in the released individuals were close to those of hatchery-reared juveniles, suggesting that yearling released individuals had similar quantitative genetic characteristics of growth and morphometric traits in the wild to hatchery-reared juveniles. [source]