Nonspecific Lipid Transfer Proteins (nonspecific + lipid_transfer_protein)

Distribution by Scientific Domains


Selected Abstracts


Biochemical, immunological and clinical characterization of a cross-reactive nonspecific lipid transfer protein 1 from mulberry

ALLERGY, Issue 5 2010
M. A. Ciardiello
To cite this article: Ciardiello MA, Palazzo P, Bernardi ML, Carratore V, Giangrieco I, Longo V, Melis M, Tamburrini M, Zennaro D, Mari A, Colombo P. Biochemical, immunological and clinical characterization of a cross-reactive nonspecific lipid transfer protein 1 from mulberry. Allergy 2010; 65: 597,605. Abstract Background:, Mulberry (Morus spp.) is a genus comprising several species of deciduous trees whose fruits are commonly eaten in southern Europe. Subjects with severe systemic reaction have been described. The aim of this study was to isolate the allergens of this species. Methods:, A nonspecific lipid transfer protein 1 (ns-LTP1) was purified from black mulberry by ion exchange and reverse phase high-performance liquid chromatography, and the primary structure was elucidated by direct protein sequencing. Its allergenic activity was evaluated in vivo by skin prick test and in vitro by Western Blot, CD203c basophil activation assay and high throughput multiplex inhibition method on immunosolid-phase allergen chip (ISAC). Results:, Mulberry ns-LTP (Mor n 3) comprises 91 amino acids producing a molecular mass of 9246 Da. This protein shows high sequence identity with several allergenic ns-LTP1. Immunoblot analysis and CD203c activation assay demonstrated its allergenic activity in symptomatic subjects and in ns-LTP allergic patients who are not mulberry consumers. Immunological co-recognition was studied in vivo on a selected group of well-characterized ns-LTP allergic patients showing a high percentage of nMor n 3+ subjects (88.46%) even in patients who have never eaten mulberry before. IgE inhibition on ISAC micro-array demonstrated an almost complete cross-reactivity to nArt v 3, rCor a 8 and a very high percentage of inhibition to nPru p 3. Conclusions:, Mor n 3 is the first allergen isolated in black mulberry and immunologically characterized. It displayed allergenic activity among symptomatic and nonconsumer patients and a pattern of cross-reactivity to other plant-derived LTPs. [source]


Purification and structural stability of the peach allergens Pru p 1 and Pru p 3

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue S2 2008
Sonja Gaier
Abstract Pru p 1 (a Bet v 1 homologue) and Pru p 3 (a nonspecific lipid transfer protein; nsLTP) are major allergenic proteins in peach fruit, but differ in their abundance and stability. Pru p 1 has low abundance and is highly labile and was purified after expression as a recombinant protein in Escherichia coli. Pru p 3 is highly abundant in peach peel and was purified by conventional methods. The identities of the proteins were confirmed by sequence analysis and their masses determined by MS analysis. The purified proteins reacted with antisera against related allergens from other species: Pru p 1 with antiserum to Bet v 1 and Pru p 3 with antiserum to Mal d 3 (from apple). The presence of secondary and tertiary structure was demonstrated by circular dichroism (CD) and high field NMR spectroscopy. CD spectroscopy also showed that the two proteins differed in their stability at pH 3 and in their ability to refold after heating to 95°C. Thus, Pru p 1 was unfolded at pH 3 even at 25°C but was able to refold after heating to 95°C at pH 7.5. In contrast, Pru p 3 was unable to refold after heating under neutral conditions but readily refolded after heating at pH 3. [source]


Par j 1 and Par j 2, the two major allergens in Parietaria judaica, bind preferentially to monoacylated negative lipids

FEBS JOURNAL, Issue 6 2009
Roberto González-Rioja
Par j 1 and Par j 2 proteins are the two major allergens in Parietaria judaica pollen, one of the main causes of allergic diseases in the Mediterranean area. Each of them contains eight cysteine residues organized in a pattern identical to that found in plant nonspecific lipid transfer proteins. The 139- and 102-residue recombinant allergens, corresponding respectively to Par j 1 and Par j 2, refold properly to fully functional forms, whose immunological properties resemble those of the molecules purified from the natural source. Molecular modeling shows that, despite the lack of extensive primary structure homology with nonspecific lipid transfer proteins, both allergens contain a hydrophobic cavity suited to accommodate a lipid ligand. In the present study, we present novel evidence for the formation of complexes of these natural and recombinant proteins from Parietaria pollen with lipidic molecules. The dissociation constant of oleyl-lyso-phosphatidylcholine is 9.1 ± 1.2 ,m for recombinant Par j 1, whereas pyrenedodecanoic acid shows a much higher affinity, with a dissociation constant of approximately 1 ,m for both recombinant proteins, as well as for the natural mixture. Lipid binding does not alter the secondary structure content of the protein but is very efficient in protecting disulfide bonds from reduction by dithiothreitol. We show that Par j 1 and Par j 2 not only bind lipids from micellar dispersions, but also are able to extract and transfer negative phospholipids from bilayers. [source]


Lipid transfer proteins from Brassica campestris and mung bean surpass mung bean chitinase in exploitability

JOURNAL OF PEPTIDE SCIENCE, Issue 10 2007
Peng Lin
Abstract Antifungal peptides with a molecular mass of 9 kDa and an N -terminal sequence demonstrating remarkable similarity to those of nonspecific lipid transfer proteins (nsLTPs) were isolated from seeds of the vegetable Brassica campestris and the mung bean. The purified peptides exerted an inhibitory action on mycelial growth in various fungal species. The antifungal activity of Brassica and mung bean nsLTPs were thermostable, pH-stable, and stable after treatment with pepsin and trypsin. In contrast, the antifungal activity of mung bean chitinase was much less stable to changes in pH and temperature. Brassica LTP inhibited proliferation of hepatoma Hep G2 cells and breast cancer MCF 7 cells with an IC50 of 5.8 and 1.6 µM, respectively, and the activity of HIV-1 reverse transcriptase with an IC50 of 4 µM. However, mung bean LTP and chitinase were devoid of antiproliferative and HIV-1 reverse transcriptase inhibitory activities. In contrast to the mung bean LTP, which exhibited antibacterial activity, Brassica LTP was inactive. All three antifungal peptides lacked mitogenic activity toward splenocytes. These results indicate that the two LTPs have more desirable activities than the chitinase and that there is a dissociation between the antifungal and other activities of these antifungal proteins. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source]


The potato StLTPa7 gene displays a complex Ca2+ -associated pattern of expression during the early stage of potato,Ralstonia solanacearum interaction

MOLECULAR PLANT PATHOLOGY, Issue 1 2009
GANG GAO
SUMMARY Although nonspecific lipid transfer proteins (nsLTPs) are widely expressed during plant defence responses to pathogens, their functions and regulation are not fully understood. In this article, we report the isolation of a cDNA for the new nsLTP, StLTPa7, from cultivated potato (Solanum tuberosum) infected with Ralstonia solanacearum. The cDNA was predicted to encode a type 1 nsLTP containing an N-terminal signal sequence and possessing the characteristic features of nsLTPs. A phylogenetic analysis showed that the encoded amino acid sequence of the nsLTP was similar to those of other previously reported plant nsLTPs, which contain a putative calmodulin-binding site consisting of approximately 12 highly conserved amino acid residues. The expression of the StLTPa7 gene was studied during the early stages of potato,R. solanacearum interaction using real-time quantitative polymerase chain reaction (qRT-PCR) and Northern analyses, and a complex calcium (Ca2+)-associated pattern of expression was observed with the following features: (i) transcripts of the StLTPa7 gene were systemically up-regulated by infection with R. solanacearum; (ii) the StLTPa7 gene was stimulated by salicylic acid, methyl jasmonate, abscisic acid and Ca2+; (iii) qRT-PCR showed that, during the early stage of R. solanacearum infection, nsLTP transcripts accumulated over a time course that paralleled that of Ca2+ accumulation, detected using environmental scanning electron microscopy and energy-dispersive X-ray (EDAX) spectrometry; and (iv) the Ca2+ channel blocker, ruthenium red, partially blocked R. solanacearum -induced StLTPa7 expression. This report represents the first use of EDAX analysis to establish a synchrony between Ca2+ accumulation and nsLTP expression in response to potato,R. solanacearum interactions. Collectively, these results suggest that StLTPa7 may be a pathogen- and Ca2+ -responsive plant defence gene. [source]