Home About us Contact | |||
Non-marine Environments (non-marine + environment)
Selected AbstractsActinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environmentsENVIRONMENTAL MICROBIOLOGY, Issue 4 2008Adrian K. Sharma Summary Proteorhodopsins are light-energy-harvesting transmembrane proteins encoded by genes recently discovered in the surface waters of the world's oceans. Metagenomic data from the Global Ocean Sampling expedition (GOS) recovered 2674 proteorhodopsin-related sequences from 51 aquatic samples. Four of these samples were from non-marine environments, specifically, Lake Gatun within the Panama Canal, Delaware Bay and Chesapeake Bay and the Punta Cormorant Lagoon in Ecuador. Rhodopsins related to but phylogenetically distinct from most sequences designated proteorhodopsins were present at all four of these non-marine sites and comprised three different clades that were almost completely absent from marine samples. Phylogenomic analyses of genes adjacent to those encoding these novel rhodopsins suggest affiliation to the Actinobacteria, and hence we propose to name these divergent, non-marine rhodopsins ,actinorhodopsins'. Actinorhodopsins conserve the acidic amino acid residues critical for proton pumping and their genes lack genomic association with those encoding photo-sensory transducer proteins, thus supporting a putative ion pumping function. The ratio of recA and radA to rhodopsin genes in the different environment types sampled within the GOS indicates that rhodopsins of one type or another are abundant in microbial communities in freshwater, estuarine and lagoon ecosystems, supporting an important role for these photosystems in all aquatic environments influenced by sunlight. [source] Origin and geochemistry of Miocene marine evaporites associated with red beds: Great Kavir Basin, Central IranGEOLOGICAL JOURNAL, Issue 1 2007Hossain Rahimpour-Bonab Abstract During the Cenozoic numerous shallow epicontinental evaporite basins formed due to tectonic movements in the Northern Province of the Central Iran Tectonic Zone (the Great Kavir Basin). During the Miocene, due to sea-level fluctuations, thick sequences of evaporites and carbonates accumulated in these basins that subsequently were overlain by continental red beds. Development of halite evaporites with substantial thickness in this area implies inflow of seawater along the narrow continental rift axis. The early ocean basin development was initiated in Early Eocene time and continued up to the Middle Miocene in the isolated failed rift arms. Competition between marine and non-marine environments, at the edge of the encroaching sea, produced several sequences of both abrupt and gradual transition from continental wadi sediments to marginal marine evaporites in the studied area. These evaporites show well-preserved textures indicative of relatively shallow-brine pools. The high Br content of these evaporites indicates marine-derived parent brines that were under the sporadic influence of freshening by meteoric water or replenishing seawater. However, the association of hopper and cornet textures denotes stratified brine that filled a relatively large pool and prevented rapid variations in the Br profile. Unstable basin conditions that triggered modification of parent brine chemistry prevailed in this basin and caused variable distribution patterns for different elements in the chloride units. The presence of sylvite and the absence of Mg-sulphate/chlorides in the paragenetic sequence indicate SO4,depleted parent brine in the studied sequence. Petrographic examinations along with geochemical analyses on these potash-bearing halites reveal parental brines which were a mixture of seawater and CaCl2 -rich brines. The source of CaCl2 -rich brines is ascribed to the presence of local rift systems in the Great Kavir Basin up to the end of the Early Miocene. Copyright © 2007 John Wiley & Sons, Ltd. [source] A trace fossil assemblage from fluvial Old Red deposits (Wood Bay Formation; Lower to Middle Devonian) of NW-Spitsbergen, SvalbardLETHAIA, Issue 2 2004MAX WISSHAK From the fluvial Old Red Sandstone (ORS) of the Lower to Middle Devonian Wood Bay Formation (NW-Spitsbergen), a diverse trace fossil assemblage, including two new ichnotaxa, is described: Svalbardichnus trilobus igen. n., isp. n. is interpreted as the three-lobed resting trace of an early phyllocarid crustacean (Rhinocarididae). Cruziana polaris isp. n. yields morphological details that point towards a trilobite origin. This occurence of presumably marine trace makers in a fluvial red bed sequence raises the question of whether we are dealing with marine ingressions that are not sedimentologically expressed, with homeomorphy, or with an adaptation of marine groups to non-marine environments. [source] |