Home About us Contact | |||
Nonlinear Fashion (nonlinear + fashion)
Selected AbstractsResponses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysisGLOBAL CHANGE BIOLOGY, Issue 9 2009WEIJUN SHEN Abstract With the large extent and great amount of soil carbon (C) storage, drylands play an important role in terrestrial C balance and feedbacks to climate change. Yet, how dryland soils respond to gradual and concomitant changes in multiple global change drivers [e.g., temperature (Ts), precipitation (Ppt), and atmospheric [CO2] (CO2)] has rarely been studied. We used a process-based ecosystem model patch arid land simulator to simulate dryland soil respiration (Rs) and C pool size (Cs) changes to abrupt vs. gradual and single vs. combined alterations in Ts, Ppt and CO2 at multiple treatment levels. Results showed that abrupt perturbations generally resulted in larger Rs and had longer differentiated impacts than did gradual perturbations. Rs was stimulated by increases in Ts, Ppt, and CO2 in a nonlinear fashion (e.g., parabolically or asymptotically) but suppressed by Ppt reduction. Warming mainly stimulated heterotrophic Rs (i.e., Rh) whereas Ppt and CO2 influenced autotrophic Rs (i.e., Ra). The combined effects of warming, Ppt, and CO2 were nonadditive of primary single-factor effects as a result of substantial interactions among these factors. Warming amplified the effects of both Ppt addition and CO2 elevation whereas Ppt addition and CO2 elevation counteracted with each other. Precipitation reduction either magnified or suppressed warming and CO2 effects, depending on the magnitude of factor's alteration and the components of Rs (Ra or Rh) being examined. Overall, Ppt had dominant influence on dryland Rs and Cs over Ts and CO2. Increasing Ppt individually or in combination with Ts and CO2 benefited soil C sequestration. We therefore suggested that global change experimental studies for dryland ecosystems should focus more on the effects of precipitation regime changes and the combined effects of Ppt with other global change factors (e.g., Ts, CO2, and N deposition). [source] A nonlinear atomization model for computation of drop size distributions and spray simulationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 11 2005Hongbok Park Abstract A model has been developed to provide a comprehensive simulation of a spray formed by a high-speed liquid jet. The primary atomization process is simulated in a completely nonlinear fashion using the boundary element method under the assumption of axisymmetric, inviscid flow. The presence of the orifice boundary layer is simulated with a ring vortex whose strength and location are uniquely determined from boundary layer properties at the orifice exit plane. Droplet and axisymmetric ligament tracking models have been developed to provide more comprehensive spray simulations. The breakup of the axisymmetric ligaments shed from the parent surface is assessed both in a nonlinear fashion as well as using the linear stability analysis of Ponstein. Using this latter approach, drop size distributions have been generated from first principles and compared with the popular Rosin,Rammler model. Copyright © 2005 John Wiley & Sons, Ltd. [source] Timing is everything: flexible phenology and shifting selection in a colonial seabirdJOURNAL OF ANIMAL ECOLOGY, Issue 2 2009Thomas E. Reed Summary 1In order to reproduce successfully in a temporally varying environment, iteroparous animals must exhibit considerable behavioural flexibility across their lifetimes. By adjusting timing of breeding each year, parents can ensure optimal overlap between the energy intensive period of offspring production and the seasonal peak in favourable environmental conditions, thereby increasing their chances of successfully rearing young. 2Few studies investigate variation among individuals in how they respond to fluctuating conditions, or how selection acts on these individual differences, but this information is essential for understanding how populations will cope with rapid environmental change. 3We explored inter-annual trends in breeding time and individual responses to environmental variability in common guillemots Uria aalge, an important marine top predator in the highly variable California Current System. Complex, nonlinear relationships between phenology and oceanic and climate variables were found at the population level. Using a novel application of a statistical technique called random regression, we showed that individual females responded in a nonlinear fashion to environmental variability, and that reaction norm shape differed among females. 4The pattern and strength of selection varied substantially over a 34-year period, but in general, earlier laying was favoured. Females deviating significantly from the population mean laying date each year also suffered reduced breeding success, with the strength of nonlinear selection varying in relation to environmental conditions. 5We discuss our results in the wider context of an emerging literature on the evolutionary ecology of individual-level plasticity in the wild. Better understanding of how species-specific factors and local habitat features affect the timing and success of breeding will improve our ability to predict how populations will respond to climate change. [source] Chemical and physical plant defence across multiple ontogenetic stages in a tropical rain forest understorey treeJOURNAL OF ECOLOGY, Issue 4 2009Bruce L. Webber Summary 1Variation over plant ontogeny can play an important role in shaping trade-offs between investing resources in growth, reproduction and defence. Most previous ontogenetic studies on plant defence have compared two life stages, making it impossible to follow complete ontogenetic trajectories for plant defence traits. 2We used the highly defended rain forest understorey tree Ryparosa kurrangii to examine chemical (cyanogen concentrations; CNM) and physical (leaf mass per area; LMA) ontogenetic defence trajectories across multiple stages of development for the first time, using field and glasshouse plants. 3In glasshouse seedlings, total plant cyanide and CNM decreased between cotyledon-bearing and recently autonomous seedlings. In field populations, foliar CNM decreased in a nonlinear fashion and showed a trade-off with LMA through the ontogenetic progression from small seedlings to large mature trees. 4Cyanogenesis was ubiquitous in all individuals tested, with considerable quantitative plasticity in constitutive expression. Environmental influences on defence traits, as measured by foliar nitrogen and potential light availability in the field, had no detectable effect on CNM. Non-cyanide nitrogen (N , NCN)M was negatively correlated with CNM, and NCN was negatively correlated with plant height; therefore, at constant plant height there was no relationship between (N , NCN)M and CNM. LMA was positively correlated with increasing light availability. 5Our results suggest that light and nitrogen availability have no detectable effect on CNM in R. kurrangii and that most of the observed population-level CNM plasticity may be due to underlying genetic and ontogenetic influences. These findings are related to a theoretical model recently proposed for resistance trajectories during plant ontogeny, taking into account the life-history traits of rain forest understorey trees. 6Synthesis. The nonlinear ontogenetic trajectory of plant defence expression observed in this study suggests that ontogenetic defence changes may be strongly influenced by plant life-history traits, the defence(s) examined and the environmental niche the plant occupies. [source] ESTIMATION OF HEDONIC RESPONSES FROM DESCRIPTIVE SKIN SENSORY DATA BY CHI-SQUARE MINIMIZATIONJOURNAL OF SENSORY STUDIES, Issue 1 2006I.F. ALMEIDA ABSTRACT Six topical formulations were evaluated by a trained panel according to a descriptive analysis methodology and by a group of consumers who rated the products on a hedonic scale. We present a new approach that describes the categorical appreciation of appearance, texture and skinfeel of the formulations by the consumers as a function of related sensory attributes assessed by the trained panel. For each hedonic attribute, a latent random variable depending on the sensory attributes is constructed and made discrete (in a nonlinear fashion) according to the distribution of consumer-hedonic scores in such a way as to minimize a corresponding chi-square criterion. Standard partial least squares (PLS) regression, bootstrapping and cross-validation techniques describing the overall liking of the hedonic attributes as a function of associated sensory attributes were also applied. Results from both methods were compared, and it was concluded that chi-square minimization can work as a complementary method to the PLS regression. [source] |