Normal Human Liver (normal + human_liver)

Distribution by Scientific Domains


Selected Abstracts


Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication,

HEPATOLOGY, Issue 6 2006
Marianne Bonvin
Hypermutations in hepatitis B virus (HBV) DNA by APOBEC3 cytidine deaminases have been detected in vitro and in vivo, and APOBEC3G (A3G) and APOBEC3F (A3F) have been shown to inhibit the replication of HBV in vitro, but the presumably low or even absent hepatic expression of these enzymes has raised the question as to their physiological impact on HBV replication. We show that normal human liver expresses the mRNAs of APOBEC3B (A3B), APOBEC3C (A3C), A3F, and A3G. In primary human hepatocytes, interferon alpha (IFN-,) stimulated the expression of these cytidine deaminases up to 14-fold, and the mRNAs of A3G, A3F, and A3B reached expression levels of 10%, 3%, and 3%, respectively, relative to GAPDH mRNA abundance. On transfection, the full-length protein A3BL inhibited HBV replication in vitro as efficiently as A3G or A3F, whereas the truncated splice variant A3BS and A3C had no effect. A3BL and A3BS were detected predominantly in the nucleus of uninfected cells; however, in HBV-expressing cells both proteins were found also in the cytoplasm and were associated with HBV viral particles, similarly to A3G and A3F. Moreover, A3G, A3F, and A3BL, but not A3BS, induced extensive G-to-A hypermutations in a fraction of the replicated HBV genomes. In conclusion, the editing enzymes A3BL, A3F, and most markedly A3G, which are expressed in liver and up-regulated by IFN-, in hepatocytes, are candidates to contribute to the noncytolytic clearance of HBV. (HEPATOLOGY 2006;43:1364,1374.) [source]


Can hepatic stellate cells express alpha-smooth muscle actin in normal human liver?

LIVER INTERNATIONAL, Issue 4 2001
Sébastien Lepreux
[source]


Expression of gap junction protein connexin 32 in chronic liver diseases

LIVER INTERNATIONAL, Issue 2 2000
Kazuaki Yamaoka
Abstract:Background: Gap junctions contain intercellular channels through which contacting cells communicate directly. The expression of connexin 32, a major gap junction protein in the liver, during the progression of chronic liver diseases has not yet been clarified. Methods: Immunohistochemical staining was performed using anti-connexin 32 antibody on 6 specimens of normal human liver, 7 of chronic viral hepatitis, and 7 of liver cirrhosis. Results: The number of gap junction plaques in chronic viral hepatitis and liver cirrhosis was significantly smaller than that in normal liver (10350±2180 and 7550±3040 vs 22560±3700 spots/mm2, p<0.01). The number of gap junction plaques tended to be lower in liver cirrhosis than in chronic viral hepatitis. Conclusion: These results suggest that in chronic liver diseases impaired intercellular communication between hepatocytes occurs. [source]


Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2008
Shaohui Sui
Abstract The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ. [source]


Large scale depletion of the high-abundance proteins and analysis of middle- and low-abundance proteins in human liver proteome by multidimensional liquid chromatography

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2008
Mingxia Gao
Abstract An unbiased method for large-scale depletion of high-abundance proteins and identification of middle- or low-abundance proteins by multidimensional LC (MDLC) was demonstrated in this paper. At the protein level, the MDLC system, coupling the first dimensional strong cation exchange (SCX) chromatography with the second dimensional RP-HPLC, instead of immunoaffinity technology, was used to deplete high-abundance proteins. Sixty-two fractions from SCX were separated further by RPLC. UV absorption spectra were observed to differentiate high-abundance proteins from middle- or low-abundance proteins. After the depletion of high-abundance proteins, middle- or low-abundance proteins were enriched, digested, and separated by online 2D-micro-SCX/cRPLC. The eluted peptides were deposited on the MALDI target and detected by MALDI-TOF/TOF MS. This depletion strategy was applied to the proteome of the normal human liver (NHL) provided by the China Human Liver Proteome Project (CHLPP). In total, 58 high-abundance proteins were depleted in one experiment. The strategy increases greatly the number of identified proteins and around 1213 proteins were identified, which was about 2.7 times as that of the nondepletion method. [source]