Home About us Contact | |||
Normal Human Bronchial Epithelial Cells (normal + human_bronchial_epithelial_cell)
Selected AbstractsRole for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cellsINTERNATIONAL JOURNAL OF CANCER, Issue 6 2004Umadevi V. Wesley Abstract Lung cancer is the leading cause of cancer death. Lung cancers produce a variety of mitogenic growth factors that stimulate tumor cell proliferation and migration. The cell surface protease, dipeptidyl peptidase IV (DPPIV), is involved in diverse biologic functions, including peptide-mediated cellular growth and differentiation. DPPIV is expressed in various normal tissues, including lung tissue, and its expression is lost in many types of human cancers. DPPIV expression and its enzymatic activity are detected in normal bronchial and alveolar epithelium but different histologic subtypes of lung carcinomas lose DPPIV expression. To investigate the role of DPPIV in lung carcinoma, we examined the expression of DPPIV at both mRNA and protein levels in non small cell lung cancer (NSCLC) cell lines and normal human bronchial epithelial cells. DPPIV expression was detectable in normal lung epithelial cells, but was absent or markedly reduced in all NSCLC cell lines at both mRNA and protein levels. Restoration of DPPIV expression in NSCLC cells resulted in profound morphologic changes, inhibition of cell proliferation, anchorage-independent growth, in vitro cell migration and tumorigenicity in nude mice. DPPIV reexpression also correlated with increased p21 expression, leading to induction of apoptosis and cell cycle arrest in G1 stage. These effects were accompanied by increased expression of cell surface proteins, fibroblast-activating protein (Fap,) and CD44 that are associated with suppression of tumor growth and metastasis. Thus, DPPIV functions as a tumor suppressor, and its downregulation may contribute to the loss of growth control in NSCLC cells. © 2004 Wiley-Liss, Inc. [source] Alcohol Functionally Upregulates Toll-Like Receptor 2 in Airway Epithelial CellsALCOHOLISM, Issue 3 2009Kristina L. Bailey Background:, Alcoholics are known to have more severe airway diseases of the lung, such as bronchitis. Little is known about why this phenomenon is observed. We hypothesized that alcohol may modulate Toll-like receptor 2 (TLR2), which regulates inflammation caused by gram-positive bacteria. Methods:, Airway epithelial cells [primary bronchial epithelial cells (NHBE) and 16HBE 14o-] were exposed to 0 to 100 mM alcohol for 0 to 24 hours. Real time PCR was used to quantify TLR2 mRNA. Protein levels of TLR2 were determined using Western blots and fluorescence activated cell sorting (FACS) on cells exposed to 0, 50, and 100 mM alcohol. Finally, cells were "primed" with alcohol, stimulated with a TLR2 agonist (peptidoglycan), and interleukin 8 (IL-8) release was measured. Results:, Alcohol, at biologically relevant concentrations (25 to 100 mM), caused a 2 to 3-fold time- and concentration-dependent increase in TLR2 mRNA in normal human bronchial epithelial cells and 16HBE 14o- cells. Western blots for TLR2 revealed a qualitative increase in TLR2 protein in cells exposed to 100 mM alcohol. FACS showed that TLR2 was quantitatively increased on the surface of airway epithelial cells that were exposed to alcohol. Airway cells that were primed with alcohol produced nearly twice as much IL-8 in response to 40 ng of peptidoglycan than naive cells. Conclusions:, Alcohol upregulates TLR2 message and protein in the airway epithelium. This leads to exaggerated inflammation in response to environmental stimuli that would normally be well tolerated in airway epithelial cells. This may be a partial explanation of why alcoholics have more severe airway disease than nonalcoholics. [source] German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cellsALLERGY, Issue 8 2006K. Page Background:, Matrix metalloproteinases (MMPs) digest extracellular matrix proteins and may play a role in the pathogenesis of bronchial asthma. MMP-9 levels are increased in the bronchoalveolar lavage fluid and sputum of asthmatics compared with that of controls. As exposure to cockroaches is an environmental risk factor for asthma, we sought to investigate the role of German cockroach fecal remnants (frass) on MMP-9 expression. Methods:, Human bronchial epithelial cells (16HBE14o-) and primary normal human bronchial epithelial cells were treated with cockroach frass in the absence or presence of tumor necrosis factor (TNF),. MMP-9 mRNA, protein levels and pro-MMP-9 activity were determined using real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA) and zymogram assays. Pretreatment of frass with aprotinin abolished protease activity. PD98059, a chemical inhibitor of extracellular signal regulated kinase (ERK), and SLIGKV, an activator of protease-activated receptor (PAR)-2 were also used. AP-1DNA binding was determined by electrophoretic mobility shift assay (EMSA) and ERK phosphorylation by Western blot analysis. Results:, Cockroach frass augmented TNF, -mediated MMP-9 mRNA and protein expression by a mechanism dependent on active serine proteases within frass and not on endogenous endotoxin. Frass increased ERK phosphorylation, and chemical inhibition of ERK attenuated cockroaches' effects on MMP-9. Serine proteases are known to activate the PAR-2 receptor. We found that selective activation of PAR-2 using the peptide SLIGKV augmented TNF, -induced MMP-9 protein levels and increased ERK phosphorylation. Frass and SLIGKV each increased AP-1 translocation and DNA binding. Conclusions:, These data suggest that German cockroach frass contains active serine proteases which augment TNF, -induced MMP-9 expression by a mechanism involving PAR-2, ERK and AP-1. [source] Loss of Betaig-h3 protein is frequent in primary lung carcinoma and related to tumorigenic phenotype in lung cancer cellsMOLECULAR CARCINOGENESIS, Issue 2 2006Yongliang Zhao Abstract Betaig-h3 as a secreted protein induced by transforming growth factor-, has been suggested to modulate cell adhesion and tumor formation. Although we have previously shown that downregulation of Betaig-h3 gene is involved in the cellular transformation of human bronchial epithelial cells induced by radiation, its regulation in primary human lung cancers is not clearly understood. In this study, Betaig-h3 expression was studied in 130 primary human lung carcinomas by immunohistochemistry. Betaig-h3 protein was absent or reduced by more than two-fold in 45 of 130 primary lung carcinomas relative to normal lung tissues examined. Recovery of Betaig-h3 expression in H522 lung cancer cells lacking endogenous Betaig-h3 protein significantly suppressed their in vitro cellular growth and in vivo tumorigenicity. In addition, parental H522 cancer cells are resistant to the etoposide induced apoptosis compared with normal human bronchial epithelial cells. However, recovery of Betaig-h3 expression in H522 cancer cells results in significantly higher sensitivity to apoptotic induction than parental tumor cells. IGFBP3 is upregulated in Betaigh3-transfected H522 cells that may mediate the apoptotic sensitivity and antitumor function of Betaig-h3 gene. These observations demonstrate that downregulation of Betaig-h3 gene is a frequent event and related to the tumor progression in human lung cancer. © 2005 Wiley-Liss, Inc. [source] Synthetic double-stranded RNA induces multiple genes related to inflammation through Toll-like receptor 3 depending on NF-,B and/or IRF-3 in airway epithelial cellsCLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2006S. Matsukura Summary Background We hypothesized that synthetic double-stranded (ds)RNA may mimic viral infection and induce expression of genes related to inflammation in airway epithelial cells. Objective We analysed what gene was up-regulated by synthetic dsRNA poly I : C and then focused this study on the role of Toll-like receptor 3 (TLR3), a receptor of dsRNA and its transcriptional pathway. Methods Airway epithelial cell BEAS-2B and normal human bronchial epithelial cells were cultured in vitro. Expression of targets RNA and protein were analysed by PCR and ELISA. Localization of TLR3 expression in the cells was analysed with flow cytometry. To analyse the role of TLR3 and transcription factors, knockdown of these genes was performed with short interfering RNA (siRNA). Results Real-time PCR revealed that poly I : C significantly increased the expression of mRNAs for chemokines IP-10, RANTES, LARC, MIP-1,, IL-8, GRO-, and ENA-78 and cytokines IL-1,, GM-CSF, IL-6 and the cell adhesion molecule ICAM-1 in both cell types. Increases in protein levels were also observed. Expression of these genes was significantly inhibited in BEAS-2B cells in which TLR3 expression was knocked down. However, pre-treatment with anti-TLR3 mAb, which interferes with the function of TLR3 expressed on the cell surface, did not inhibit the genes expression and these data were concordant with the results that TLR3 was expressed inside airway epithelial cells. The study of siRNA for NF-,B and IRF3 showed that they transduce the signal of poly I : C, but their roles were different in each target gene. Conclusion TLR3 is expressed inside airway epithelial cells and transduces synthetic dsRNA signals. These signals may increase expression of inflammatory cytokines, chemokines and ICAM-1 through activation of transcription factors NF-,B and/or IRF3 in airway epithelial cells. [source] |