Home About us Contact | |||
Normal Human Brain (normal + human_brain)
Selected AbstractsRCAN1-1L is overexpressed in neurons of Alzheimer's disease patientsFEBS JOURNAL, Issue 7 2007Cathryn D. Harris At least two different isoforms of RCAN1 mRNA are expressed in neuronal cells in normal human brain. Although RCAN1 mRNA is elevated in brain regions affected by Alzheimer's disease, it is not known whether the disease affects neuronal RCAN1, or if other cell types (e.g. astrocytes or microglia) are affected. It is also unknown how many protein isoforms are expressed in human brain and whether RCAN1 protein is overexpressed in Alzheimer's disease. We explored the expression of both RCAN1-1 and RCAN1-4 mRNA isoforms in various cell types in normal and Alzheimer's disease postmortem samples, using the combined technique of immunohistochemistry and in situ hybridization. We found that both exon 1 and exon 4 are predominantly expressed in neuronal cells, and no significant expression of either of the exons was observed in astocytes or microglial cells. This was true in both normal and Alzheimer's disease brain sections. We also demonstrate that RCAN1-1 mRNA levels are approximately two-fold higher in neurons from Alzheimer's disease patients versus non-Alzheimer's disease controls. Using western blotting, we now show that there are three RCAN1 protein isoforms expressed in human brain: RCAN1-1L, RCAN1-1S, and RCAN1-4. We have determined that RCAN1-1L is expressed at twice the level of RCAN1-4, and that there is very minor expression of RCAN1-1S. We also found that the RCAN1-1L protein is overexpressed in Alzheimer's disease patients, whereas RCAN1-4 is not. From these results, we conclude that RCAN1-1 may play a role in Alzheimer's disease, whereas RCAN1-4 may serve another purpose. [source] Vesicle amine transport protein-1 (VAT-1) is upregulated in glioblastomas and promotes migrationNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2009S. Mertsch Aim:,Diffuse invasion of single-glioma cells is the main obstacle to successful therapy of these tumours. After identifying vesicle amine transport protein-1 (VAT-1) as being upregulated in invasive human gliomas, we study its possible function in glioblastoma cell migration. Methods:,Based on data obtained from previous oligonucleotide arrays, we investigated expression of VAT-1 in glioblastoma tissue and cell lines on mRNA levels using reverse transcriptase PCR. Furthermore, we examined the amount and localization of VAT-1 protein using immunoblotting and immunohistochemistry. Using small interfering RNA technology we repressed VAT-1 expression in human glioma cell lines and analysed their migration using wound healing and transwell migration assays. Results:,Increased VAT-1 mRNA and protein levels were found in glioblastoma tissues and cell lines compared with normal human brain. Small interfering RNA-mediated VAT-1 knockdown led to significantly reduced migration of human glioma cells. Conclusions:,VAT-1 is overexpressed in glioblastomas and functionally involved in glioma cell migration, representing a new component involved in glioma invasion. [source] LRRK2 is a component of granular alpha-synuclein pathology in the brainstem of Parkinson's diseaseNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2008J. Alegre-Abarrategui Classical Parkinson's disease (PD) is characterized by the appearance of Lewy bodies (LBs) in affected brain regions, showing mostly compact alpha-synuclein deposition, in contrast with punctate or granular deposition, hypothesized to represent early stages of aggregation. Leucine-rich repeat kinase 2 (LRRK2) is the commonest mutated gene in inherited and idiopathic PD. LRRK2 mutation carriers display a diverse neuropathology, including alpha-synuclein and tau inclusions, suggesting an upstream role for LRRK2 in protein aggregation. We studied LRRK2 expression throughout the normal human brain with three different antibodies. We also examined the pattern of LRRK2 expression in relation to alpha-synuclein aggregation and LB formation in the brainstem of sporadic LB disease. Physiological LRRK2 expression was not restricted to regions preferentially affected in PD and LRRK2 often localized to the nuclear envelope in addition to the known cytoplasmic expression. In PD, we were able to consistently detect LRRK2 in the halo of a minority (approximately 10%) of nigral LBs using three different antibodies. Only one antibody detected LRRK2 in the core of approximately 80% of classic LBs. In the lower brainstem, most notably in the dorsal motor nucleus of the vagus, we found previously unrecognized LRRK2 labelling of complex globular lesions, filled with LB-like matter showing a punctate or granular staining for alpha-synuclein. This was often accompanied by strong LRRK2 expression within dystrophic neurites. Our findings confirm widespread physiological LRRK2 expression in the human brain and suggest an association of LRRK2 with possible early-stage alpha-synuclein pathology in the brainstem of PD. [source] Proton T2 relaxation of cerebral metabolites of normal human brain over large TE rangeNMR IN BIOMEDICINE, Issue 1 2005E. E. Brief Abstract T2 of NAA, creatine and choline-containing compounds were measured in posterior frontal white matter and occipital grey matter in 10 healthy human volunteers. Decay curves comprised signals from eight TE times ranging from 30 to 800,ms with TR 2000,ms acquired with a PRESS sequence on a 1.5,T clinical scanner. Simulations were conducted to assess the precision of T2 estimates from decay curves comprising varying numbers and ranges of TE points. Mean and standard errors for T2s of NAA, creatine and choline-containing compounds were 300(8), 169(3) and 239(4) ms in posterior frontal white matter and 256(6), 159(8) and 249(8) ms in occipital grey matter. In vivoT2s found for choline and NAA were shorter than the T2s in the literature. The elevation of literature T2s is accounted for by the simulation results, which demonstrated that there is a bias towards lengthened T2s when T2 is measured with a maximum TE , T2. Concentration estimates are at risk of being underestimated if previously reported T2 corrections are used. Copyright © 2004 John Wiley & Sons, Ltd. [source] Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areasEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2003Oriana Chiry Abstract The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678,757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I,III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information. [source] |