Normal Force (normal + force)

Distribution by Scientific Domains


Selected Abstracts


Influence of Normal Force and Humidity on the Friction and Wear of Unlubricated Reciprocating Sliding Steel/Steel Couples

LUBRICATION SCIENCE, Issue 4 2004
D. Klaffke
Abstract The friction and wear behaviour of different steel/steel couples was investigated in laboratory tests with unlubricated reciprocating sliding motion. Two different steel balls were tested against two different steel discs in dry, normal, and moist air at room tem-perature. The influence of normal force on friction and wear was studied in the range from 1 to 10 N for all three levels of relative humidity (RH). RH strongly influenced wear behaviour for all four couples, while the friction behaviour was less affected by RH. For all the couples, normal force was found to influence wear rate with a tendency for the wear rate to increase with decreasing normal force. The coefficient of friction also increased with decreasing normal force, but to a much lesser extent than that evaluated for the wear rate. [source]


Investigation of the sliding behavior between steel and mortar for seismic applications in structures

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2009
Jason McCormick
Abstract The friction developed between a steel base plate and a mortar base contributes shear resistance to the building system during a seismic event. In order to investigate the possible sliding behavior between the base plate and the mortar, a shake table study is undertaken using a large rigid mass supported by steel contact elements which rest on mortar surfaces connected to the shake table. Horizontal input accelerations are considered at various magnitudes and frequencies. The results provide a constant friction coefficient during sliding with an average value of approximately 0.78. A theoretical formulation of the friction behavior is also undertaken. The theoretical equations show that the sliding behavior is dependent on the ratio of the friction force to the input force. The addition of vertical accelerations to the system further complicates the sliding behavior as a result of the varying normal force. This results in a variable friction resistance which is a function of the amplitude, phase, and frequency of the horizontal and vertical input motions. In general, this study showed a consistent and reliable sliding behavior between steel and mortar. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Effect of variation of normal force on seismic performance of resilient sliding isolation systems in highway bridges

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 15 2005
Hirokazu Iemura
Abstract In this study, a series of shaking table tests are carried out on scaled models of two seismically isolated highway bridges to investigate the effect of rocking motion and vertical acceleration on seismic performance of resilient sliding isolators. In addition, performance of RSI is compared with system having solely natural rubber bearings. Test results show that variation of normal force on sliders due to rocking effect and vertical acceleration makes no significant difference in response of RSI systems. In addition, analytical response of prototype isolated bridge and the model used in experiments is obtained analytically by using non-linear model for isolation systems. It is observed that for seismically isolated bridges, dynamic response of full-scale complex structures can be predicted with acceptable accuracy by experiments using a simple model of the structure. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Analysis of the solid phase stress tensor in multiphase porous media

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2007
William G. Gray
Abstract Conservation equations for mass, momentum, energy, and entropy are formulated for the phases and interfaces of a three-phase system consisting of a solid and two immiscible fluids. The microscale equations are averaged to the macroscale by integration over a representative elementary volume. Thermodynamic statements for each of the phases and interface entities are also formulated at the microscale and then averaged to the macroscale. This departure from most uses of thermodynamics in macroscale analysis ensures consistency between models and parameters at the two scales. The expressions for the macroscale rates of change of internal energy are obtained by differentiating the derived forms for energy and making use of averaging theorems. These thermodynamic expressions, along with the conservation equations, serve as constraints on the entropy inequality. A linearization of the resulting equations is employed to investigate the theoretical origins of the Biot coefficient that relates the hydrostatic part of the total stress tensor to the normal force applied at the solid surface by the pore fluids. The results here are placed in the context of other formulations and expressions that appear in the literature. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Elastic half-space under an oblique line impulse

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2003
Moche Ziv
Abstract This paper presents transient deformation of an elastic half-space under two types of line-concentrated impulsive loads applied simultaneously. One load is a sustainable normal force, while the other is a momentarily applied vector shear force. For each of the two loads the author gave the respective solution in two separate papers. Here the two solutions are superimposed to determine the response of the half-space under the combined loads. The present work is devoted to the salient wave propagation features seen in the resultant computer plots that disclose the strained half-space. Since each critical deformation is explicitly indicated in the plots by a wave front, the interpretation of the response of the half-space to the applied load is readily available at a glance. A comparison is then presented that identifies those deformation traits and wave fronts, among the nineteen here, that are more closely related to those found in previous works. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Source signature and elastic waves in a half-space under a sustainable line-concentrated impulsive normal force

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2002
Moche Ziv
Abstract First, the response of an ideal elastic half-space to a line-concentrated impulsive normal load applied to its surface is obtained by a computational method based on the theory of characteristics in conjunction with kinematical relations derived across surfaces of strong discontinuities. Then, the geometry is determined of the obtained waves and the source signature,the latter is the imprint of the spatiotemporal configuration of the excitation source in the resultant response. Behind the dilatational precursor wave, there exists a pencil of three plane waves extending from the vertex at the impingement point of the precursor wave on the stress-free surface of the half-space to three points located on the other two boundaries of the solution domain. These four wave-arresting points (end points) of the three plane waves constitute the source signature. One wave is an inhibitor front in the behaviour of the normal stress components and the particle velocity, while in the behaviour of the shear stress component, it is a surface-axis wave. The second is a surface wave in the behaviour of the horizontal components of the dependent variables, while the third is an inhibitor wave in the behaviour of the shear stress component. An inhibitor wave is so named, since beyond it, the material motion is dying or becomes uniform. A surface-axis wave is so named, since upon its arrival, like a surface wave, the dependent variable in question features an extreme value, but unlike a surface wave, it exists in the entire depth of the solution domain. It is evident from this work that Saint-Venant's principle for wave propagation problems cannot be formulated; therefore, the above results are a consequence of the particular model proposed here for the line-concentrated normal load. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Frictional behaviors during applications of lotions by use of a novel friction meter and evaluation of tactile feeling

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 4 2010
A. Ishikubo
Vol. 43, No.3 (2009) pp.171,176 A novel friction meter that allows us to measure normal force and friction force at the same time was developed, and the frictional behavior of cosmetics during application was investigated for an evaluation of a tactile feeling, permeability. As a result of measurements of four lotion samples by 15 panels, time courses of normal forces, friction forces and friction coefficients were different among the panels though they used the same samples. It was also found that the maximum value of differentiation in friction coefficient with better permeability feeling was larger than those with less permeability feeling. This suggests that relative changes in the time course of friction coefficients have an important influence on a tactile feeling, permeability. [source]


Improved lateral force calibration based on the angle conversion factor in atomic force microscopy

JOURNAL OF MICROSCOPY, Issue 2 2007
DUKHYUN CHOI
Summary A novel calibration method is proposed for determining lateral forces in atomic force microscopy (AFM), by introducing an angle conversion factor, which is defined as the ratio of the twist angle of a cantilever to the corresponding lateral signal. This factor greatly simplifies the calibration procedures. Once the angle conversion factor is determined in AFM, the lateral force calibration factors of any rectangular cantilever can be obtained by simple computation without further experiments. To determine the angle conversion factor, this study focuses on the determination of the twist angle of a cantilever during lateral force calibration in AFM. Since the twist angle of a cantilever cannot be directly measured in AFM, the angles are obtained by means of the moment balance equations between a rectangular AFM cantilever and a simple commercially available step grating. To eliminate the effect of the adhesive force, the gradients of the lateral signals and the twist angles as a function of normal force are used in calculating the angle conversion factor. To verify reliability and reproducibility of the method, two step gratings with different heights and two different rectangular cantilevers were used in lateral force calibration in AFM. The results showed good agreement, to within 10%. This method was validated by comparing the coefficient of friction of mica so determined with values in the literature. [source]


Three-dimensional force measurements on oral implants: a methodological study

JOURNAL OF ORAL REHABILITATION, Issue 9 2000
J. Duyck
This paper describes a methodology that allows in vitro and in vivo quantification and qualification of forces on oral implants. Strain gauges are adapted to the outer surface of 5·5 and 7 mm standard abutments (Brånemark System®, Nobel Biocare, Sweden). The readings of the strain gauges are transformed into a numerical representation of the normal force and the bending moment around the X- and Y- axis. The hardware and the software of the 3D measuring device based on the strain gauge technology is explained and its accuracy and reliability tested. The accuracy level for axial forces and bending moments is 9.72 N and 2.5 N·cm, respectively, based on the current techniques for strain gauged abutments. As an example, an in vivo force analysis was performed in a patient with a full fixed prosthesis in the mandible. Since axial loads of 450 N and bending moments of 70 N·cm were recorded, it was concluded that the accuracy of the device falls well within the scope of our needs. Nevertheless, more in vivo research is needed before well defined conclusions can be drawn and strategies developed to improve the biomechanics of oral implants. [source]


Influence of Normal Force and Humidity on the Friction and Wear of Unlubricated Reciprocating Sliding Steel/Steel Couples

LUBRICATION SCIENCE, Issue 4 2004
D. Klaffke
Abstract The friction and wear behaviour of different steel/steel couples was investigated in laboratory tests with unlubricated reciprocating sliding motion. Two different steel balls were tested against two different steel discs in dry, normal, and moist air at room tem-perature. The influence of normal force on friction and wear was studied in the range from 1 to 10 N for all three levels of relative humidity (RH). RH strongly influenced wear behaviour for all four couples, while the friction behaviour was less affected by RH. For all the couples, normal force was found to influence wear rate with a tendency for the wear rate to increase with decreasing normal force. The coefficient of friction also increased with decreasing normal force, but to a much lesser extent than that evaluated for the wear rate. [source]


Friction property study of the surface of ZDDP and MoDTC antiwear additive films using AFM/LFM and force curve methods

LUBRICATION SCIENCE, Issue 1 2002
Jiping Ye
Abstract The friction properties and material differences of the surface of ZDDP and MoDTC antiwear additive films, which give clear evidence of different friction coefficients in a pin-on-disc test, have been studied using atomic force microscopy (AFM)/lateral force microscopy (LFM) and force curve methods. The AFM/LFM observations show that the friction force on the surface of MoDTC additive films over the sliding area of a steel disc is lower and the friction force of ZDDP additive films is higher than that of afilmless area. Lateral force scope-trace evaluations reveal that the ratio of the friction forces on the surface of the ZDDP film, the filmless area, and the MoDTC film under the same normal force is approximately 1.5:1.0:0.7. Force curve measurements indicate that the surface materials of the ZDDP film, thefilmless area, and the MoDTC film differ according to their attractive forces, that is 29 nN for the ZDDP film, 22 nN for the filmless area, and 12 nN for the MoDTC film. These results correspond to the friction behaviour in the pin-on-disc test and also agree with the idea of the formation of solid MoS2 lubricant from MoDTC additives on the surface of the antiwear film. [source]


Verschleißmechanismen bei moderater und extremer Grenzreibung

MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, Issue 10-11 2004
M. Scherge
wear mechanisms; continuous wear measurement; surface analysis Abstract Mit einem Stift-Scheibe-Tribometer wurden für das System Stahlstift/Stahlscheibe Versuche durchgeführt, die drastisch unterschiedliche Verschleißraten zur Folge hatten. Durch Wahl der Normalkraft wurde die Energiedissipation so eingestellt, dass im ersten Versuch Verschleißraten in der Größenordnung von Nanometern pro Stunde erreicht wurden, während im zweiten Versuch Mikrometer pro Stunde erzielt wurden. Die Proben wurden nach dem Experiment hinsichtlich Struktur und chemischer Zusammensetzung analysiert. Im Bereich der kleinen Verschleißraten dominierten plastisches Fließen und mechanische Vermischung während die hohen Verschleißraten mit starker Topographieänderung und Oxidation einher gingen. Wear mechanisms at moderate and extreme friction conditions Using a pin-on-disk tribometer drastically different wear rates were obtained in experiments running a steel pin against a steel disk. By tuning the normal force the energy dissipation was varied resulting in either mild wear in the range of nanometers per hour or severe wear with a wear rate of micrometers per hour. After the tribological tests the samples were analyzed with respect to structure and chemical composition. Whereas small wear rates are accompanied by plastic flow and mechanical intermixing, severe wear results in significant topography changes and oxidation. [source]


Surface topography and surface chemistry of radiation-patterned P(tBuMA),analysis by atomic force microscopy

POLYMER INTERNATIONAL, Issue 9 2003
Gregory S Watson
Abstract Poly-(tert -butyl methacrylate) (P(tBuMA)) thin-film surfaces were patterned by UV radiation at doses in the range 10,100 mJ cm,2, in order to induce laterally differentiated surface chemistry with µm resolution. The most likely pathway for the radiation chemistry predicts a transition from hydrophobicity to hydrophilicity. Outcomes of analysis by atomic force microscopy under air ambient conditions were consistent with that prediction. Topographic and lateral force imaging, in combination with friction loop analysis, revealed shrinkage and increased friction arising from exposure. Force versus distance analysis revealed greater adhesion in hydrophilic regions, due to greater meniscus force acting on the tip. The thickness of adsorbed moisture, increased by a factor of 2.5 from ca 0.8 nm for the unirradiated surface, as a result of greater hydrophilicity induced by radiation. The latter observation shows that the increased friction was due principally to the greater normal force on the tip from an additional meniscus force. Copyright © 2003 Society of Chemical Industry [source]


On the investigation of shell buckling due to random geometrical imperfections implemented using Karhunen,Loève expansions

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2008
K. J. Craig
Abstract For the accurate prediction of the collapse behaviour of thin cylindrical shells, it is accepted that geometrical and other imperfections in material properties and loading have to be accounted for in the simulation. There are different methods of incorporating imperfections, depending on the availability of accurate imperfection data. The current paper uses a spectral decomposition of geometrical uncertainty (Karhunen,Loève expansions). To specify the covariance of the required random field, two methods are used. First, available experimentally measured imperfection fields are used as input for a principal component analysis based on pattern recognition literature, thereby reducing the cost of the eigenanalysis. Second, the covariance function is specified analytically and the resulting Friedholm integral equation of the second kind is solved using a wavelet-Galerkin approach. Experimentally determined correlation lengths are used as input for the analytical covariance functions. The above procedure enables the generation of imperfection fields for applications where the geometry is slightly modified from the original measured geometry. For example, 100 shells are perturbed with the resulting random fields obtained from both methods, and the results in the form of temporal normal forces during buckling, as simulated using LS-DYNA®, as well as the statistics of a Monte Carlo analysis of the 100 shells in each case are presented. Although numerically determined mean values of the limit load of the current and another numerical study differ from the experimental results due to the omission of imperfections other than geometrical, the coefficients of variation are shown to be in close agreement. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Frictional behaviors during applications of lotions by use of a novel friction meter and evaluation of tactile feeling

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 4 2010
A. Ishikubo
Vol. 43, No.3 (2009) pp.171,176 A novel friction meter that allows us to measure normal force and friction force at the same time was developed, and the frictional behavior of cosmetics during application was investigated for an evaluation of a tactile feeling, permeability. As a result of measurements of four lotion samples by 15 panels, time courses of normal forces, friction forces and friction coefficients were different among the panels though they used the same samples. It was also found that the maximum value of differentiation in friction coefficient with better permeability feeling was larger than those with less permeability feeling. This suggests that relative changes in the time course of friction coefficients have an important influence on a tactile feeling, permeability. [source]


Modeling, experimenting, and improving skid steering on a 6 × 6 all-terrain mobile platform

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 2 2010
J.-C. Fauroux
Multiple-wheel all-terrain vehicles without a steering system must use great amounts of power when skid steering. Skid steering is modeled with emphasis put on the ground contact forces of the wheels according to the mass distribution of the vehicle. To increase steering efficiency, it is possible to modify the distribution of the normal contact forces on the wheels. This paper focuses on two aspects: first, it provides a model and an experimental study of skid steering on an all-road 6 × 6 electric wheelchair, the Kokoon mobile platform. Second, it studies two configurations of the distribution of the normal forces on the six wheels, obtained via suspension adjustments. This was both modeled and experimented. Contact forces were measured with a six-component force plate. The first results show that skid steering can be substantially improved by only minor adjustments to the suspensions. This setting decreases the required longitudinal forces applied by the engines and improves the steering ability of the vehicle or robot. Skid-steering characteristic parameters, such as the position of the center of rotation and absorbed skid power, are also dealt with in this paper. © 2010 Wiley Periodicals, Inc. [source]


Role of Internal Friction in Indentation Damage in a Mica-Containing Glass-Ceramic

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2001
Anthony C. Fischer-Cripps
The indentation response of a mica-containing glass-ceramic that exhibits shear-driven yield in an indentation test is interpreted in terms of events occurring on the microstructural scale. It is proposed that shear-driven damage within the specimen occurs via internal sliding along cleavage planes within the mica platelets. The sliding surfaces in this case are considered to be atomically smooth so the real and apparent areas of contact coincide. The frictional shear stress is thus independent of the normal forces arising from thermal mismatch stresses and only depends on the work of adhesion of the interface and the scale of the contacts. The scale of contacts for these materials lies within an intermediate zone in which the frictional shear stress arises from the stress required to nucleate dislocation-like discontinuities within the material. This leads to a size effect similar to that experienced by a crack in Mode II loading and is in accordance with previous work in which a connection between such a size effect and the macroscopic response of the material was identified. This work has particular relevance to the design and manufacturing of ceramics in machining, wear, bearings, and coatings applications. [source]


Verstärken von Stahlbetonstützen mit textilbewehrtem Beton

BETON- UND STAHLBETONBAU, Issue 10 2009
Regine Ortlepp Dr.-Ing.
Versuche; Bewehrung Abstract Der Aufsatz beschreibt die Ergebnisse experimenteller Untersuchungen zur Wirkung einer Textilbetonverstärkung an 2 m langen Stützen mit und ohne innen liegender Stahlbewehrung. Die Verstärkung mit textilbewehrtem Beton wurde auf zwei verschiedene Weisen ausgeführt, sowohl als vollständige Umwicklung über die gesamte Länge der Stützen als auch als teilweise Verstärkung über eine Länge von 30 cm in den Lasteinleitungsbereichen. Die einzelnen Anteile am Tragverhalten der verstärkten Stützen wurden untersucht. Ein einfaches Berechnungsmodell wird angegeben. Strengthening of Columns using Textile Reinforced Concrete (TRC) In the context of rehabilitation and repair works or in the course of usage changes of existing buildings the planning engineer frequently is confronted with the task of strengthening the loadbearing structure. This can become necessary, for example, if live loads are increased because of changes of use or if the structural safety of a building must be restored after a fire or earthquake. Particularly columns represent important components and elements of the static system for many buildings, whose main task is bearing normal forces. The results of experimental tests on the effect of a strengthening from textile reinforced concrete at 2 m long columns, both with and without internal steel reinforcement, are described in this article. The strengthening with textile reinforced concrete was made both wrapping round completely along the full height of the columns and partly wrapping round the columns along 300 mm in the load introduction ranges. Related to the unstrengthened reference columns ultimate load increasings by up to 85% could thereby be achieved. The individual components of the load bearing properties are analysed. A simple calculation model is indicated. [source]