Normal Embryonic Development (normal + embryonic_development)

Distribution by Scientific Domains


Selected Abstracts


Normal embryonic development and cardiac morphogenesis in mice with Wnt1-Cre-mediated deletion of connexin43

GENESIS: THE JOURNAL OF GENETICS AND DEVELOPMENT, Issue 6 2006
M. Kretz
Abstract Mice harboring a null mutation in the gap junction protein connexin43 (Cx43) die shortly after birth due to an obstruction of the right ventricular outflow tract of the heart. These hearts exhibit prominent pouches at the base of the pulmonary outlet, i.e., morphological abnormalities that were ascribed to Cx43-deficiency in neural crest cells. In order to examine the Cx43 expression pattern in neural crest cells and derived tissues and to test whether neural crest-specific deletion of Cx43 leads to the conotruncal defects seen in Cx43null mice, we ablated Cx43 using a Wnt1-Cre transgene. Deletion of Cx43 was complete and occurred in neural crest cells as well as in neural crest-derived tissues. Nevertheless, hearts of mice lacking Cx43 specifically in neural crest cells were indistinguishable from controls. Thus, the morphological heart abnormalities of Cx43 null mice are most likely not caused by lack of Cx43 in neural crest cells. genesis 44:269,276, 2006. © 2006 Wiley-Liss, Inc. [source]


Overview of retinoid metabolism and function

DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006
Rune Blomhoff
Abstract Retinoids (vitamin A) are crucial for most forms of life. In chordates, they have important roles in the developing nervous system and notochord and many other embryonic structures, as well as in maintenance of epithelial surfaces, immune competence, and reproduction. The ability of all- trans retinoic acid to regulate expression of several hundred genes through binding to nuclear transcription factors is believed to mediate most of these functions. The role of all- trans retinoic may extend beyond the regulation of gene transcription because a large number of noncoding RNAs also are regulated by retinoic acid. Additionally, extra-nuclear mechanisms of action of retinoids are also being identified. In organisms ranging from prokaryotes to humans, retinal is covalently linked to G protein-coupled transmembrane receptors called opsins. These receptors function as light-driven ion pumps, mediators of phototaxis, or photosensory pigments. In vertebrates phototransduction is initiated by a photochemical reaction where opsin-bound 11- cis -retinal is isomerized to all- trans -retinal. The photosensitive receptor is restored via the retinoid visual cycle. Multiple genes encoding components of this cycle have been identified and linked to many human retinal diseases. Central aspects of vitamin A absorption, enzymatic oxidation of all- trans retinol to all- trans retinal and all- trans retinoic acid, and esterification of all- trans retinol have been clarified. Furthermore, specific binding proteins are involved in several of these enzymatic processes as well as in delivery of all- trans retinoic acid to nuclear receptors. Thus, substantial progress has been made in our understanding of retinoid metabolism and function. This insight has improved our view of retinoids as critical molecules in vision, normal embryonic development, and in control of cellular growth, differentiation, and death throughout life. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 606,630, 2006 [source]


Sperm function tests and fertility

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2006
R. J. Aitken
Summary Traditionally, the diagnosis of male infertility has depended upon a descriptive evaluation of human semen with emphasis on the number of spermatozoa that are present in the ejaculate, their motility and their morphology. The fundamental tenet underlying this approach is that male fertility can be defined by reference to a threshold concentration of motile, morphologically normal spermatozoa that must be exceeded in order to achieve conception. Many independent studies have demonstrated that this fundamental concept is flawed and, in reality, it is not so much the absolute number of spermatozoa that determines fertility, but their functional competence. In the light of this conclusion, a range of in vitro tests have been developed to monitor various aspects of sperm function including their potential for movement, cervical mucus penetration, capacitation, zona recognition, the acrosome reaction and sperm,oocyte fusion. Such functional assays have been found to predict the fertilizing capacity of human spermatozoa in vitro and in vivo with some accuracy. Recent developments in this field include the introduction of tests to assess the degree to which human spermatozoa have suffered oxidative stress as well as the integrity of their nuclear and mitochondrial DNA. Such assessments not only yield information on the fertilizing capacity of human spermatozoa but also their ability to support normal embryonic development. [source]


Intracellular dynamics of Smad-mediated TGF, signaling

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2003
Robert M. Greene
The transforming growth factor-, (TGF,) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGF, on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGF, action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGF,. In the current study, elements of the Smad component of the TGF, intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGF,1, TGF,2, and TGF,3 was demonstrated. TGF,-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGF,-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGF, signaling system in cells of the developing murine palate. J. Cell. Physiol. 197: 261,271, 2003. © 2003 Wiley-Liss, Inc. [source]


Molecular fingerprinting of TGFß-treated embryonic maxillary mesenchymal cells

ORTHODONTICS & CRANIOFACIAL RESEARCH, Issue 4 2003
M.M. Pisano
Abstract The transforming growth factor-ß (TGFß) family represents a class of signaling molecules that plays a central role in normal embryonic development, specifically in development of the craniofacial region. Members of this family are vital to development of the secondary palate where they regulate maxillary and palate mesenchymal cell proliferation and extracellular matrix synthesis. The function of this growth factor family is particularly critical in that perturbation of either process results in a cleft of the palate. While the cellular and phenotypic effects of TGFß on embryonic craniofacial tissue have been extensively cataloged, the specific genes that function as downstream mediators of TGFß in maxillary/palatal development are poorly defined. Gene expression arrays offer the ability to conduct a rapid, simultaneous assessment of hundreds to thousands of differentially expressed genes in a single study. Inasmuch as the downstream sequelae of TGFß action are only partially defined, a complementary DNA (cDNA) expression array technology (Clontech's AtlasTM Mouse cDNA Expression Arrays), was utilized to delineate a profile of differentially expressed genes from TGFß-treated primary cultures of murine embryonic maxillary mesenchymal cells. Hybridization of a membrane-based cDNA array (1178 genes) was performed with 32P-labeled cDNA probes synthesized from RNA isolated from either TGFß-treated or vehicle-treated embryonic maxillary mesenchymal cells. Resultant phosphorimages were subject to AtlasImageTM analysis in order to determine differences in gene expression between control and TGFß-treated maxillary mesenchymal cells. Of the 1178 arrayed genes, 552 (47%) demonstrated detectable levels of expression. Steady state levels of 22 genes were up-regulated, while those of 8 other genes were down-regulated, by a factor of twofold or greater in response to TGFß. Affected genes could be grouped into three general functional categories: transcription factors and general DNA-binding proteins; growth factors/signaling molecules; and extracellular matrix and related proteins. The extent of hybridization of each gene was evaluated by comparison with the abundant, constitutively expressed mRNAs: ubiquitin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ornithine decarboxylase (ODC), cytoplasmic beta-actin and 40S ribosomal protein. No detectable changes were observed in the expression levels of these genes in response to TGFß treatment. Gene expression profiling results were verified by Real-Time quantitative polymerase chain reaction. Utilization of cDNA microarray technology has enabled us to delineate a preliminary transcriptional map of TGFß responsiveness in embryonic maxillary mesenchymal cells. The profile of differentially expressed genes offers revealing insights into potential molecular regulatory mechanisms employed by TGFß in orchestrating craniofacial ontogeny. [source]


Effect of Anti-Basic Fibroblast Growth Factor (Anti-bFGF) on In Vitro Embryonic Development in Rat

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2009
E. Unur
Summary In this study, we aimed at the in vitro effects of anti-fibroblast growth factor-2 (anti-FGF-2 or anti-bFGF) on embryo culture in rats. In vitro effects of anti-bFGF on total embryonic development were investigated in 40 rat embryos (which were divided into four groups) (obtained from five pregnant females) at 9.5 days of gestation that were cultured in whole rat serum (WRS), and in WRS+ 2.5, 5, and 10 ,g/ml anti-bFGF. After 48 h of culturing, the embryos from each group were harvested to be analysed morphologically according to a morphological scoring system and biochemically to obtain the embryo protein content. The morphological score, embryo protein content, somite number and crown-rump length of embryos indicated that embryos cultured in WRS+ anti-bFGF had significant embryonic retardation. Mean morphological scores for the embryos grown in WRS, in the presence of 2.5, 5 and 10 ,g anti-FGF-2 were 61.4 ± 1.64, 46.3 ± 8.42, 27 ± 2.58 and13.6 ± 0.96 respectively. These results suggest that bFGF is very important for normal embryonic development and rat anti-bFGF neutralizes bFGF effect. [source]