Home About us Contact | |||
Normal Cells (normal + cell)
Terms modified by Normal Cells Selected AbstractsResveratrol Imparts Photoprotection of Normal Cells and Enhances the Efficacy of Radiation Therapy in Cancer Cells,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2008Shannon Reagan-Shaw Solar radiation spans a whole range of electromagnetic spectrum including UV radiation, which are potentially harmful to normal cells as well as ionizing radiations which are therapeutically beneficial towards the killing of cancer cells. UV radiation is an established cause of a majority of skin cancers as well as precancerous conditions such as actinic keratosis. However, despite efforts to educate people about the use of sunscreens and protective clothing as preventive strategies, the incidence of skin cancer and other skin-related disorders are on the rise. This has generated an enormous interest towards finding alternative approaches for management of UV-mediated damages. Chemoprevention via nontoxic agents, especially botanical antioxidants, is one such approach that is being considered as a plausible strategy for prevention of photodamages including photocarcinogenesis. In this review, we have discussed the photoprotective effects of resveratrol, an antioxidant found in grapes and red wine, against UVB exposure-mediated damages in vitro and in vivo. In addition, we have also discussed studies showing that resveratrol can act as a sensitizer to enhance the therapeutic effects of ionizing radiation against cancer cells. Based on available literature, we suggest that resveratrol may be useful for (1) prevention of UVB-mediated damages including skin cancer and (2) enhancing the response of radiation therapies against hyperproliferative, precancerous and neoplastic conditions. [source] 1,3-Diaryl-2-propenones and 2-Benzylidene-1,3-indandiones: A Quest for Compounds Displaying Greater Toxicity to Neoplasms than Normal CellsARCHIV DER PHARMAZIE, Issue 9 2010Hari N. Pati Abstract A series of 1,3-diaryl-2-propenones 2a,j and analogous 2-benzylidene-1,3-indandiones 3a,j were evaluated against various neoplasms and normal cells. In general, greater cytotoxic potencies and selective toxicity to human malignant cells were observed by the compounds in series 2 rather than 3. In particular, 2i emerged as a lead molecule having an average CC50 figure of 8.6,µM and a selective index value of 18. Various physicochemical features of 2a,j were correlated with the cytotoxic potencies to neoplastic cell lines which provide guidelines for expansion of this series of compounds. The enone 2i induced internucleosomal DNA fragmentation and activated caspase-3 in HL-60 cells suggesting that one of the ways in which the cytotoxicity of the compounds in series 2 is mediated towards some of the cell lines used in this study is by apoptosis. Neurotoxicity in mice was generally lower in series 2 than 3a,j. [source] Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy,APMIS, Issue 7-8 2008ELENA FAVARO Angiogenesis plays an established role in the promotion of growth of dormant micrometastasis, because blood vessels deliver oxygen and nutrients to the tumor microenvironment. In addition to this feeding function, however, there is accumulating evidence suggesting that endothelial cells,and perhaps other cellular components of the microenvironment,could communicate both positive and negative signals to tumor cells. This cross-talk between heterogeneous cell types could turn out to be important in the regulation of cancer cell behavior. Normal cells recruited during the angiogenic process, or attracted to future sites of metastasis by soluble products released by cancer cells, have been shown to create a niche favorable to tumor cell proliferation and survival. In addition, following an exogenous angiogenic spike, as may occur during inflammation, the same mechanisms could lead to re-activation of poorly angiogenic tumor cells seeded into tissues. In this review, we discuss the possible implications of this hypothesis for our understanding of the phenomenon of tumor dormancy. [source] ESE-3, an Ets family transcription factor, is up-regulated in cellular senescenceCANCER SCIENCE, Issue 9 2007Makoto Fujikawa Normal cells irreversibly stop dividing after being exposed to a variety of stresses. This state, called cellular senescence, has recently been demonstrated to act as a tumor-suppressing mechanism in vivo. A common set of features are exhibited by senescent cells, but the molecular mechanism leading to the state is poorly understood. It has been shown that p38, a stress-induced mitogen-activated protein kinase (MAPK), plays a pivotal role in inducing cellular senescence in diverse settings. To better understand the senescence-inducing pathway, microarray analyses of normal human fibroblasts that ectopically activated p38 were performed. It was found that five genes encoding ESE-3, inhibin ,A, RGS5, SSAT and DIO2 were up-regulated in senescent cells induced by RasV12, H2O2 and telomere shortening, but not in quiescent or actively growing cells, suggesting that these genes serve as molecular markers for various types of cellular senescence. The ectopic expression of ESE-3 resulted in retarded growth, up-regulation of p16INK4a but not of p21, and increased levels of SA-,-gal activity. In contrast, RGS5, SSAT and the constitutive active form of the inhibin ,A receptor gene did not induce such senescence phenotypes when ectopically expressed. ESE-3 expression increased the activity of the p16INK4a promoter in a reporter assay, and recombinant ESE-3 protein bound to the Ets-binding sequences present in the promoter. These results suggest that ESE-3 plays a role in the induction of cellular senescence as a downstream molecule of p38. (Cancer Sci 2007; 98: 1468,1475) [source] Cytotoxicity and genotoxicity of sodium percarbonate: a comparison with bleaching agents commonly used in discoloured pulpless teethINTERNATIONAL ENDODONTIC JOURNAL, Issue 2 2010M. R. Fernández Fernández MR, Carvalho RV, Ogliari FA, Beira FA, Etges A, Bueno M. Cytotoxicity and genotoxicity of sodium percarbonate: a comparison with bleaching agents commonly used in discoloured pulpless teeth. International Endodontic Journal, 43, 102,108, 2010. Abstract Aim, To evaluate the cytotoxicity and genotoxicity of sodium percarbonate (SPC) in comparison with bleaching agents used on discoloured pulpless teeth. Methodology, The cytotoxicity and genotoxicity of bleaching agents were evaluated both in their pure form as well as at concentrations commonly used in clinical practice. Hydrogen peroxide (HP), carbamide peroxide (CP), sodium perborate (SP) and SPC were diluted in Dulbecco's modified Eagle's medium (DMEM) in series. To evaluate the cytotoxicity, the survival of 3T3/NIH mouse fibroblasts was measured photometrically using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after a 24 h-exposure period. Genotoxicity was indicated by micronuclei (MN) formation, and modification of the normal cell was analysed by light microscopy (400×). Statistical analysis was performed by one-way anova, followed by a multiple-comparison Tukey post hoc test (P < 0.05). Results, All groups exhibited a dose-dependent cytotoxicity. However, CP showed a similar cytotoxic effect when compared with DMEM-untreated control (UC) group. HP and SPC were significantly more cytotoxic than SP. The genotoxicity test showed that SPC and SP had an intermediate rate of MN frequency when compared with the UC group. The mean rate of MN frequency for HP was higher and statistically more significant than for the other groups tested. No difference was observed when CP and UC groups were compared. Conclusions, Sodium percarbonate showed cytotoxicity and genotoxicity similar to those of the other products tested. However, before SPC is used clinically, studies should be conducted to confirm its safety in vivo. [source] Biomarkers, regerons, and pathways to lethal cancer,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2007Meng Qiao Abstract Cancer is a disease of "outlaw" cells that become mutated in regulatory mechanisms. They have lost normal self controls and relationships to the whole organism. Cancers can progress by several pathways from a normal cell to malignant cancer, from bad to worse. Questions about advisability of treatment for some cancers arise from the possibility that they are arrested during progression and so never become lethal. Techniques could be developed to determine the degree of progression and possibility for successful treatment. This article is intended to suggest a way of looking at cancer. It is not a review so references to research articles are infrequent. J. Cell. Biochem. 102: 1076,1086, 2007. © 2007 Wiley-Liss, Inc. [source] AMP-activated protein kinase and cancerACTA PHYSIOLOGICA, Issue 1 2009W. Wang Abstract AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Elevated AMP/ATP ratio activates AMPK, which inhibits energy-consuming processes and activates energy-producing processes to restore the energy homeostasis inside the cell. AMPK activators, metformin and thiazolidinediones, are used for the treatment of type II diabetes. Recently, reports have indicated that AMPK may also be a beneficial target for cancer treatment. Cancer cells have characteristic metabolic changes different from normal cells and, being a key metabolic regulator, AMPK may regulate the switch. AMPK may act to inhibit tumorigenesis through regulation of cell growth, cell proliferation, autophagy, stress responses and cell polarity. [source] Multiparametric analysis of normal and postchemotherapy bone marrow: Implication for the detection of leukemia-associated immunophenotypes,CYTOMETRY, Issue 1 2008D. Olaru Abstract Background: The knowledge of normal marrow is mandatory to assess the malignant counterpart of normal cells and define leukemia-associated immunophenotypes (LAIPs). In this study, the expression of a variety of antigens expressed in normal and postchemotherapy bone marrow (BM) was analyzed to provide a frame of reference for the identification of myeloid LAIPs. Methods: Multiparameter four- and six-color flow cytometry was used to define antigen combinations totally absent or present at very minimal levels in marrow cells of normal individuals (n = 20) and patients receiving chemotherapy for acute lymphoblastic leukemia (n = 20). Immature (blast) cells were gated according to CD45/SSC properties. Fifty-three acute myeloid leukemia (AML) samples were studied in six-color combinations. Results: In six-color flow cytometry, 47 phenotypes were totally absent from blast gate in all normal samples. Forty-one other phenotypes were identified in less than 0.05% of blast cells. There was no difference between normal and postchemotherapy BMs. The four-color panel allowed to identify only 30 phenotypes present at a frequency <0.05%. Using the six-color panel, 58% of the absent or infrequent phenotypes in normal BM were found in at least one of 53 AML samples. All AML cases exhibited at least one LAIP. Conclusion: Our results show that the ability to distinguish leukemic from healthy cells is considerably increased by a six-color approach. Furthermore, these absent or infrequent phenotypes in normal BM are identified in AML and can be utilized for minimal residual disease study. © 2007 Clinical Cytometry Society [source] Tumoral and tissue-specific expression of the major human ,-tubulin isotypes,CYTOSKELETON, Issue 4 2010Luis J. Leandro-García Abstract The ,-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on ,-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex ,-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human ,-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total ,-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex ,-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response. © 2010 Wiley-Liss, Inc. [source] The ,II isotype of tubulin is present in the cell nuclei of a variety of cancersCYTOSKELETON, Issue 2 2004I-Tien Yeh Abstract Tubulin, the subunit protein of microtubules, has generally been thought to be exclusively a cytoplasmic protein in higher eukaryotes. We have previously shown that cultured rat kidney mesangial cells contain the ,II isotype of tubulin in their nuclei in the form of an ,,II dimer [Walss et al., 1999: Cell Motil. Cytoskeleton 42:274,284, 1999]. More recently, we examined a variety of cancerous and non-cancerous cell lines and found ,II in the nuclei of all of the former and only a few of the latter (Walss-Bass et al., 2002: Cell Tissue Res. 308:215,223]. In order to determine if ,II -tubulin occurs in the nuclei of actual cancers as well as in cancer cell lines, we used the immunoperoxidase method to look for nuclear ,II in a variety of tumors excised from 201 patients. We found that 75% of these tumors contain ,II in their nuclei. Distribution of nuclear ,II was highly dependent on the type of cancer, with 100% of the colon and prostate cancers, but only 19% of the skin tumors, having nuclear ,II. Nuclear ,II was particularly marked in tumors of epithelial origin, of which 83% showed nuclear ,II, in contrast to 54% in tumors of non-epithelial origin. In many cases, ,II staining occurred very strongly in the nuclei and not in the cytoplasm; in other cases, ,II was present in both. In many cases, particularly metastases, otherwise normal cells adjacent to the tumor also showed nuclear ,II, suggesting that cancer cells may influence nearby cells to synthesize ,II and localize it to their nuclei. Our results have implications for the diagnosis, biology, and chemotherapy of cancer. Cell Motil. Cytoskeleton 57:96,106, 2004. © 2004 Wiley-Liss, Inc. [source] Genistein prevents thyroid hormone-dependent tail regression of Rana catesbeiana tadpoles by targetting protein kinase C and thyroid hormone receptor ,DEVELOPMENTAL DYNAMICS, Issue 3 2007L. Ji Abstract Thyroid hormone (TH)-regulated gene expression is mainly mediated by TH binding to nuclear thyroid hormone receptors (TRs). Despite extensive studies in mammalian cell lines that show that phosphorylation signaling pathways are important in TH action, little is known about their roles on TH signaling in vivo during development. Anuran metamorphosis is a postembryonic process that is absolutely dependent upon TH and tadpole tail resorption can be precociously induced by exogenous administration of 3,5,3,-triiodothyronine (T3). We demonstrate that genistein (a major isoflavone in soy products and tyrosine kinase inhibitor) and the PKC inhibitor (H7) prevent T3 -induced regression of the Rana catesbeiana tadpole tail. T3 -induced protein kinase C tyrosine phosphorylation and kinase activity are inhibited by genistein while T3 -induced up-regulation of TR, mRNA, but not TR, mRNA, is significantly attenuated, most likely through inhibition of T3 -dependent phosphorylation of the TR, protein. This phosphorylation may be modulated through PKC. These data demonstrate that T3 signaling in the context of normal cells in vivo includes phosphorylation as an important factor in establishing T3 -dependent tail regression during development. Developmental Dynamics 236:777,790, 2007. © 2007 Wiley-Liss, Inc. [source] Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiencyELECTROPHORESIS, Issue 24 2006Zhenyu Wang Abstract Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DEP. The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell is measured by integrated polymer optical elements (waveguide, lens, and fiber coupler). By comparing the cell counting rates measured by the two FCs, the collection efficiency of the DEP filter can be determined. The chips were used for quantitative determination of the effect of flow rate, applied voltage, conductivity of the sample, and frequency of the electric field on the sorting efficiency. A theoretical model for the capture efficiency was developed and a reasonable agreement with the experimental results observed. Viable and non-viable yeast cells showed different frequency dependencies and were sorted with high efficiency. At 2,MHz, more than 90% of the viable and less than 10% of the non-viable cells were captured on the DEP filter. The presented approach provides quantitative real-time data for sorting a large number of cells and will allow optimization of the conditions for, e.g., collecting cancer cells on a DEP filter while normal cells pass through the system. Furthermore, the microstructure is simple to fabricate and can easily be integrated with other microstructures for lab-on-a-chip applications. [source] Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndromeEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2007Hussam Ghoti Abstract Low-risk myelodysplastic syndrome (MDS) is characterized by cytopenia, mainly anemia, because of ineffective hematopoiesis. Some of the patients with ineffective erythropoiesis, with or without ring sideroblasts in their bone marrow, develop severe anemia requiring frequent blood transfusions and consequently develop iron overload. Excess free iron in cells catalyses the generation of reactive oxygen species (ROS) that cause cell and tissue damage. Using flow cytometry techniques, we compared the oxidative status of red blood cells (RBC), platelets and neutrophils in 14 MDS patients with those of normal donors. The results show that ROS were higher while reduced glutathione (GSH) was lower in their RBC and platelets compared with normal cells. In neutrophils, no difference was found in ROS, while the GSH levels were lower. A correlation (r = 0.6) was found between serum ferritin levels of the patients and the ROS in their RBC and platelets. The oxidative stress was ameliorated by a short incubation with the iron-chelators, the deferrioxamine and deferiprone or with antioxidants such as N -acetylcysteine, suggesting that MDS patients might benefit from treatment with iron-chelators and antioxidants. [source] Platelet-derived growth factor (PDGF) in human acute myelogenous leukemia: PDGF receptor expression, endogenous PDGF release and responsiveness to exogenous PDGF isoforms by in vitro cultured acute myelogenous leukemia blastsEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 6 2001Brynjar Foss Abstract: We investigated effects of Platelet-derived growth factor (PDGF) and Platelet factor 4 (PF-4) on the functional characteristics of native, human acute myelogenous leukemia (AML) blasts. AML blast expression of the PDGF-receptor ,-chain was detected for a subset of patients (45%), whereas PDGF-receptor ,-chain expression was detected for most patients (90%). Constitutive AML blast release of the PDGF-AB isoform (the major form also derived from normal platelets) was detected for 43% of patients, whereas PDGF-BB release was not detected for any patient. The PDGF isoforms AA, AB and BB had dose-dependent and divergent effects on spontaneous and cytokine-dependent AML blast proliferation, whereas for constitutive cytokine secretion (IL-1,, IL-6, TNF-,) inhibitory effects were rare and all three isoforms usually had no effect or enhanced the constitutive secretion. The PDGF effects were caused by a direct effect on the AML blasts and were not dependent on the presence of serum. The PDGF effects could also be detected after in vitro culture of AML cells in the presence of IL-4+granulocyte-macrophage colony stimulating factor. PF-4 had divergent effects on proliferation and cytokine secretion by native AML blasts. Our results suggest that exogenous (e.g. platelet-secreted) PDGF and PF-4 can function as regulators of leukemic hematopoiesis and possibly also modulate the function of residual AML cells in peripheral blood stem cell grafts. On the other hand, endogenous release of PDGF-AB by native blasts may modulate the function of normal cells in the bone marrow microenvironment (e.g. bone marrow stromal cells). [source] In vivo tumor cell rejection induced by NK cell inhibitory receptor blockade: Maintained tolerance to normal cells even in the presence of IL-2EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2010Gustaf Vahlne Abstract Missing-self-reactivity can be mimicked by blocking self-specific inhibitory receptors on NK cells, leading to increased rejection of syngeneic tumor cells. Using a mouse model, we investigated whether Ab-mediated blocking of inhibitory receptors, to a degree where NK cells rejected syngeneic tumor cells, would still allow self-tolerance toward normal syngeneic cells. Ly49C/I inhibitory receptors on C57BL/6 (H-2b) NK cells were blocked with F(ab')2 fragments of the mAb 5E6. Inhibitory receptor blockade in vivo caused rejection of i.v. inoculated fluorescence-labeled syngeneic lymphoma line cells but not of syngeneic spleen cells, BM cells or lymphoblasts. The selective rejection of tumor cells was NK cell-dependent and specifically induced by Ly49C/I blockade. Moreover, selective tumor rejection was maintained after treatment with 5E6 F(ab')2 for 9 wk, arguing against the induction of NK cell anergy or autoreactivity during this time. Combination therapy using 5E6 F(ab')2 together with high dose IL-2 treatment further increased lymphoma cell rejection. In addition, combination therapy reduced growth of melanoma cell line tumors established by s.c. inoculation 3 days before start of treatment. Our results demonstrate that inhibitory receptor blockade does not result in attack on normal cells, despite potent reactivity against MHC class I-expressing tumors. [source] Peripheral T,cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunizationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2005Elena Degl'Innocenti Abstract In the tumor-prone transgenic adenocarcinoma mouse prostate (TRAMP) mouse model we followed the fate of the immune response against the SV40 large T,antigen (Tag) selectively expressed in the prostate epithelium during the endogenous transformation from normal cells to tumors. Young (5,7-week-old) male TRAMP mice, despite a dim and patchy expression of Tag overlapping foci of mouse prostate intraepithelial neoplasia, displayed a strong Tag-specific cytotoxic T,lymphocyte (CTL) response after an intradermal injection of peptide-pulsed dendritic cells (DC). This response was weaker than the one found in vaccinated wild-type littermates, and was characterized by a reduced frequency and avidity of Tag-specific CTL. Early DC vaccination also subverted the profound state of peripheral tolerance typically found in TRAMP mice older than 9,10,weeks. The DC-induced CTL response indeed was still detectable in TRAMP mice of 16,weeks, and was associated with histology evidence of reduced disease progression. Our findings suggest that tumor antigens are handled as self antigens, and peripheral tolerance is associated with in situ antigen overexpression and cancer progression. Our data also support a relevant role for DC-based vaccines in controlling the induction of peripheral tolerance to tumor antigens. [source] A Molecular Brush Approach to Enhance Quantum Yield and Suppress Nonspecific Interactions of Conjugated Polyelectrolyte for Targeted Far-Red/Near-Infrared Fluorescence Cell ImagingADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Kan-Yi Pu Abstract A red-fluorescent conjugated polyelectrolyte (CPE, P2) is grafted with dense poly(ethylene glycol) (PEG) chains via click chemistry and subsequently modified with folic acid to form a molecular brush based cellular probe (P4). P4 self-assembles into a core,shell nanostructure in aqueous medium with an average size of 130 nm measured by laser light scattering. As compared to P2, P4 possesses not only a substantially higher quantum yield (11%), but also reduced nonspecific interactions with biomolecules in aqueous medium due to the shielding effect of PEG. In conjunction with its high photostability and low cytotoxicity, utilization of P4 as a far-red/near-infrared cellular probe allows for effective visualization and discrimination of MCF-7 cancer cells from NIH-3T3 normal cells in a high contrast, selective, and nonviral manner. This study thus demonstrates a flexible molecular brush approach to overcome the intrinsic drawbacks of CPEs for advanced bioimaging applications. [source] A Molecular Brush Approach to Enhance Quantum Yield and Suppress Nonspecific Interactions of Conjugated Polyelectrolyte for Targeted Far-Red/Near-Infrared Fluorescence Cell ImagingADVANCED FUNCTIONAL MATERIALS, Issue 17 2010Kan-Yi Pu Abstract A red-fluorescent conjugated polyelectrolyte (CPE, P2) is grafted with dense poly(ethylene glycol) (PEG) chains via click chemistry and subsequently modified with folic acid to form a molecular brush based cellular probe (P4). P4 self-assembles into a core,shell nanostructure in aqueous medium with an average size of 130 nm measured by laser light scattering. As compared to P2, P4 possesses not only a substantially higher quantum yield (11%), but also reduced nonspecific interactions with biomolecules in aqueous medium due to the shielding effect of PEG. In conjunction with its high photostability and low cytotoxicity, utilization of P4 as a far-red/near-infrared cellular probe allows for effective visualization and discrimination of MCF-7 cancer cells from NIH-3T3 normal cells in a high contrast, selective, and nonviral manner. This study thus demonstrates a flexible molecular brush approach to overcome the intrinsic drawbacks of CPEs for advanced bioimaging applications. [source] Hollow Mesoporous Zirconia Nanocapsules for Drug DeliveryADVANCED FUNCTIONAL MATERIALS, Issue 15 2010Shaoheng Tang Abstract Hollow mesoporous zirconia nanocapsules (hm -ZrO2) with a hollow core/porous shell structure are demonstrated as effective vehicles for anti-cancer drug delivery. While the highly porous feature of the shell allows the drug, doxorubicin(DOX), to easily pass through between the inner void space and surrounding environment of the particles, the void space in the core endows the nanocapsules with high drug loading capacity. The larger the inner hollow diameter, the higher their DOX loading capacity. A loading of 102% related to the weight of hm -ZrO2 is achieved by the nanocapsules with an inner diameter of 385,nm. Due to their pH-dependent charge nature, hm -ZrO2 loaded DOX exhibit pH-dependent drug releasing kinetics. A lower pH offers a faster DOX release rate from hm -ZrO2. Such a property makes the loaded DOX easily release from the nanocapsules when up-taken by living cells. Although the flow cytometry reveals more uptake of hm -ZrO2 particles by normal cells, hm -ZrO2 loaded DOX release more drugs in cancer cells than in normal cells, leading to more cytotoxicity toward tumor cells and less cytotoxicity to healthy cells than free DOX. [source] Acceleration of granulocyte colony-stimulating factor-induced neutrophilic nuclear lobulation by overexpression of Lyn tyrosine kinaseFEBS JOURNAL, Issue 1 2002Tomomi Omura Stimulation with granulocyte colony-stimulating factor (G-CSF) induces myeloid precursor cells to differentiate into neutrophils, and tyrosine phosphorylation of certain cellular proteins is crucial to this process. However, the signaling pathways for neutrophil differentiation are still obscure. As the Src-like tyrosine kinase, Lyn, has been reported to play a role in G-CSF-induced proliferation in avian lymphoid cells, we examined its involvement in G-CSF-induced signal transduction in mammalian cells. Expression plasmids for wild-type Lyn (Lyn) and kinase-negative Lyn (LynKN) were introduced into a murine granulocyte precursor cell line, GM-I62M, that can respond to G-CSF with neutrophil differentiation, and cell lines that overexpressed these molecules (GM-Lyn, GM-LynKN) were established. Upon G-CSF stimulation, both the GM-Lyn and GM-LynKN cells began to differentiate into neutrophils, showing early morphological changes within a few days, much more rapidly than did the parental cells, which started to exhibit nuclear lobulation about 10 days after the cells were transferred to G-CSF-containing medium. However, the time course of expression of the myeloperoxidase gene, another neutrophil differentiation marker, was not affected by the overexpression of Lyn or LynKN. Therefore, in normal cells, protein interactions with Lyn, but not its kinase activity, are important for the induction of G-CSF-induced neutrophilic nuclear lobulation in mammalian granulopoiesis. [source] Genotypic and phenotypic classification of cancer: How should the impact of the two diagnostic approaches best be balanced?GENES, CHROMOSOMES AND CANCER, Issue 9 2010Petter Brandal Neoplastic tumors are traditionally named based on their differentiation (i.e., which normal cells and tissues they resemble) and bodily site. In recent years, knowledge about the genetic basis of tumorigenesis has grown rapidly, and the new information has in several instances been incorporated into the very definition of cancerous entities. The proper contribution of the diseases' phenotype and genotype to what they are called and how they are delineated from one another has rarely been subjected to explicit reasoning, however, nor is it often made clear whether existing naming practices are founded on ontological or utilitarian grounds. We look at several examples of how the new cytogenetic and molecular genetic understanding of tumorigenesis has impacted oncological nomenclature in a significant manner, but also at counterexamples where no similar change has taken place. In all likelihood, more and more neoplastic diseases will in the future be defined and named based on their pathogenesis rather than their phenotype, not least because effective and specific drug therapies directed against the molecular change at the very heart of oncogenesis will increasingly become available. The fact that this shift in emphasis is primarily guided by utilitarian considerations rather than any perception of acquired genetic changes as somehow being more ontologically "profound" or "important" in tumorigenesis, is as it should be; both the phenotype and the genotype of tumors are key parameters across most of oncology and are likely to be retained as the basis of coexisting disease classifications for as long as we can foresee. © 2010 Wiley-Liss, Inc. [source] Alterations of pre-mRNA splicing in cancerGENES, CHROMOSOMES AND CANCER, Issue 4 2005Zane Kalnin Recent genomewide analyses of alternative splicing (AS) indicate that up to 70% of human genes may have alternative splice forms, suggesting that AS together with various posttranslational modifications plays a major role in the production of proteome complexity. Splice-site selection under normal physiological conditions is regulated in the developmental stage in a tissue type-specific manner by changing the concentrations and the activity of splicing regulatory proteins. Whereas spliceosomal errors resulting in the production of aberrant transcripts rarely occur in normal cells, they seem to be an intrinsic property of cancer cells. Changes in splice-site selection have been observed in various types of cancer and may affect genes implicated in tumor progression (for example, CD44, MDM2, and FHIT) and in susceptibility to cancer (for example, BRCA1 and APC). Splicing defects can arise from inherited or somatic mutations in cis -acting regulatory elements (splice donor, acceptor and branch sites, and exonic and intronic splicing enhancers and silencers) or variations in the composition, concentration, localization, and activity of regulatory proteins. This may lead to altered efficiency of splice-site recognition, resulting in overexpression or down-regulation of certain splice variants, a switch in splice-site usage, or failure to recognize splice sites correctly, resulting in cancer-specific splice forms. At least in some cases, changes in splicing have been shown to play a functionally significant role in tumorigenesis, either by inactivating tumor suppressors or by gain of function of proteins promoting tumor development. Moreover, cancer-specific splicing events may generate novel epitopes that can be recognized by the host's immune system as cancer specific and may serve as targets for immunotherapy. Thus, the identification of cancer-specific splice forms provides a novel source for the discovery of diagnostic or prognostic biomarkers and tumor antigens suitable as targets for therapeutic intervention. © 2005 Wiley-Liss, Inc. [source] Loss of heterozygosity analysis: Practically and conceptually flawed?GENES, CHROMOSOMES AND CANCER, Issue 4 2002Ian P.M. Tomlinson The Knudson "two-hit" hypothesis has provided the rationale for studies that aim to identify tumor-suppressor genes by mapping regions of allelic loss (loss of heterozygosity, LOH). Although LOH has been found in practically all types of tumors, very few such projects have been successful in identifying their tumor-suppressor targets. The prime explanation for this failure is probably that researchers have, in general, been too credulous about the two-hit hypothesis, and too willing to ignore factors such as intratumor heterogeneity, contamination by normal cells, karyotypic complexity, homozygous deletions, gene dosage changes, and polymerase chain reaction artifacts. We suggest ways of minimizing these problems. Unfortunately, there is no guarantee that existing or newer methods, such as genomic microarrays and in situ single-nucleotide polymorphism analysis, will solve the difficulties of LOH analysis. The future prospects for LOH studies are, as ever, uncertain. © 2002 Wiley-Liss, Inc. [source] Intrinsic genetic instability of normal human lymphocytes and its implication for loss of heterozygosityGENES, CHROMOSOMES AND CANCER, Issue 4 2001Arnolda G. de Nooij-van Dalen A combination of flow cytometry and microsatellite analysis was used to investigate loss of expression of HLA-A and/or HLA-B alleles and concurrent LOH at polymorphic chromosome 6 loci both in freshly isolated lymphocytes (in vivo mutations) and in lymphocytes cultured ex vivo. The fraction of in vivo mutants that showed LOH at 6p appeared to vary from 0%,49% for various donors. During culturing ex vivo, HLA-A, cells arose at a high rate and showed simultaneous loss of expression at the linked HLA-B locus. Up to 90% of the ex vivo arisen HLA-A2, cell population showed LOH of multiple 6p markers, and 50% had lost heterozygosity at 6q. This ex vivo spectrum resembles that found in HLA-A2 mutants obtained from lymphoblastoid cells. The HLA-A2 mutants present in vivo may reflect only a small fraction of the mutants that can be detected ex vivo. In normal lymphocytes, in vivo only mitotic recombination appears to be sustained, indicating the importance of this mechanism for tumor initiation in normal cells. Although mutations resulting in LOH at both chromosome 6 arms were shown to result in nonviable cells in normal lymphocytes, they have been shown to result in viable mutants in lymphoblastoid cells. We hypothesize that these types of mutations also occur in vivo but only survive in cells that already harbor a mutated genetic background. In light of the high rate at which these types of mutations occur, they may contribute to cancer progression. © 2001 Wiley-Liss, Inc. [source] A Smart Nanoprobe Based On Fluorescence-Quenching PEGylated Nanogels Containing Gold Nanoparticles for Monitoring the Response to Cancer TherapyADVANCED FUNCTIONAL MATERIALS, Issue 6 2009Motoi Oishi Abstract A biocompatible, caspase-3-responsive, and fluorescence-quenching smart apoptosis nanoprobe based on a PEGylated nanogel that contains gold nanoparticles (GNPs) (fluorescence quenchers) in the cross-linked polyamine gel core and fluorescein isothiocyanate (FITC)-labeled DEVD peptides at the tethered PEG chain ends is prepared for monitoring the cancer response to therapy. FITC,DEVD,nanogel,GNP shows very little fluorescence in the absence of activated caspase-3 (normal cells) through the fluorescence resonance energy transfer (FRET) process between the GNPs and the FITC molecules, while pronounced fluorescence signals are observed in apoptotic cells because of the cleavage of the DEVD peptide by activated caspase-3 present in the cells, which results in the release of FITC molecules. Thus, remarkable quenching and dequenching of fluorescence signals in response to activated caspase-3 is observed. Apoptotic cells are detected in human hepatocyte (HuH-7) multicellular tumor spheroids (MCTSs), a commonly used three-dimensional in vitro model mimicking the in vivo biology of tumors, as early as one day post-treatment with staurosporine, an apoptosis-inducing agent; while growth inhibition (i.e., change in size) of the HuH-7 MCTSs is only observed after a delay of three days (i.e., on day 4). This demonstrates the effectiveness of the FITC,DEVD,nanogel,GNP probe as a smart nanoprobe for real-time monitoring as well as a more rapid assessment of the early response to cancer therapy. [source] In vivo real-time diagnosis of nasopharyngeal carcinoma in situ by contact rhinoscopyHEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 11 2005Martin Wai Pak FRCSEd(ORL) Abstract Background. Nasopharyngeal dysplasia or nasopharyngeal carcinoma in situ (NPCIS) lesions have rarely been reported. Timely diagnosis of the preinvasive lesion may improve prognosis. Contact endoscopy has been documented to accurately differentiate normal cells of the nasopharynx from malignant cells and allows a real-time diagnosis of primary and recurrent nasopharyngeal carcinoma (NPC) in a clinical setting. However, the role of contact endoscopy in the diagnosis of NPCIS is unknown. Methods. The superficial cells of the nasopharynx in a patient with NPCIS were examined in vivo under local anaesthesia by use of a contact rhinoscope. The contact endoscopic findings were correlated with the histologic findings of the biopsy. Results. The atypical cells of the lesion were magnified and visualized under contact endoscopy. Histopathologic analysis of the biopsied tissue confirmed the presence of NPCIS staining positively for Epstein-Barr virus (EBV),encoded RNA (EBER). No cell-free EBV DNA was detected in the sera of the patient. Conclusions. Contact endoscopy can accurately identify the atypical cells of a tiny preinvasive lesion in the nasopharynx in a clinical setting, which may not be evident in routine imaging examination. © 2005 Wiley Periodicals, Inc. Head Neck27: XXX,XXX, 2005 [source] Concentricolide, an Anti-HIV Agent from the Ascomycete Daldinia concentricaHELVETICA CHIMICA ACTA, Issue 1 2006Xiang-Dong Qin Abstract A novel benzofuran lactone, named concentricolide (=,rel -(6R)-6-ethylbenzo[2,1- b:3,4- c,]difuran-8(6H)-one; 1), was isolated along with four known compounds (friedelin, cytochalasin L-696,474, armillaramide, and russulamide) from the fruiting bodies of the xylariaceous ascomycete Daldinia concentrica. The structure of 1 was established by spectroscopic methods and X-ray crystallographic analysis. Its anti-HIV-1 activity was tested. Results showed that 1 inhibited HIV-1 induced cytopathic effects. The EC50 value was 0.31,,g/ml. The therapeutic index (TI) was 247. Concentricolide exhibited the blockage (EC50 0.83,,g/ml) on syncytium formation between HIV-1 infected cells and normal cells. [source] Increased hepatotoxicity of tumor necrosis factor,related apoptosis-inducing ligand in diseased human liver,HEPATOLOGY, Issue 5 2007Xandra Volkmann Tumor necrosis factor,related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor cells but not in most normal cells and has therefore been proposed as a promising antitumor agent. Recent experiments suggested that isolated primary human hepatocytes but not monkey liver cells are susceptible to certain TRAIL agonists, raising concerns about the use of TRAIL in cancer treatment. Whether TRAIL indeed exerts hepatotoxicity in vivo and how this is influenced by chemotherapeutic drugs or liver disease are completely unknown. Employing different forms of recombinant TRAIL, we found that the cytokine can induce proapoptotic caspase activity in isolated human hepatocytes. However in marked contrast, these different TRAIL preparations induced little or no cytotoxicity when incubated with tissue explants of fresh healthy liver, an experimental model that may more faithfully mimic the in vivo situation. In healthy liver, TRAIL induced apoptosis only when combined with histone deacetylase inhibitors. Strikingly, however, TRAIL alone triggered massive apoptosis accompanied by caspase activation in tissue explants from patients with liver steatosis or hepatitis C viral infection. This enhanced sensitivity of diseased liver was associated with an increased expression of TRAIL receptors and up-regulation of proapoptotic Bcl-2 proteins. Conclusion: These results suggest that clinical trials should be performed with great caution when TRAIL is combined with chemotherapy or administered to patients with inflammatory liver diseases. (HEPATOLOGY 2007.) [source] DNA mismatch repair protein expression and microsatellite instability in primary mucosal melanomas of the head and neckHISTOPATHOLOGY, Issue 6 2007C Marani Aims:, To examine the expression of DNA mismatch repair (MMR) proteins and the presence of microsatellite instability (MSI) in seven primary mucosal melanomas of the head and neck (MMHN). Methods and results:, Haematoxylin and eosin staining and immunohistochemical analysis for routine diagnostic markers and for MMR proteins were performed. Six cases were examined for MSI. Four cases were monomorphous and three cases were pleomorphic type MMHN. Melanocytic markers were positive in all cases. Immunoreactivity for MMR proteins was weak in normal epithelium. The neoplastic tissue in six cases showed positivity for all MMR proteins with different percentages. One case showed weak positivity for hMSH2 and hMSH6 and no immunoreactivity for hMLH1 or hPMS2. Staining intensity was higher in tumour cells than in matched normal mucosa in three cases for hMSH2 and hMLH1 and in two cases for hPMS2. None of the examined cases showed MSI. Conclusions:, Expression of hMSH2 and hMLH1 proteins was up-regulated in three cases, whereas in two cases that of hPMS2 was increased. hMSH6 expression was comparable to that of normal cells in all cases. The percentage of positive neoplastic cells and the intensity of staining seemed to be greater in pleomorphic melanomas. Six cases were MMR-proficient and microsatellite stable. [source] Identification of a novel human tissue factor splice variant that is upregulated in tumor cells,INTERNATIONAL JOURNAL OF CANCER, Issue 7 2006Hitendra S. Chand Abstract Tissue factor (TF) is a transmembrane glycoprotein that serves as the prime initiator of blood coagulation and plays a critical role in thrombosis and hemostasis. In addition, a variety of tumor cells overexpress cell-surface TF, which appears to be important for tumor angiogenesis and metastasis. To elucidate the mechanism involved in the upregulation of TF in human tumor cells, a comprehensive analysis of TF mRNA from various normal and tumor cells was performed. The results of these studies indicate that, in addition to possessing a normal full-length TF transcript and minor levels of an alternatively spliced transcript known as alternatively-spliced tissue factor (asTF) (Bogdanov et al., Nat Med 2003;9:458,62), human tumor cells express additional full-length TF transcripts that are also generated by alternative splicing. Reverse transcriptase-polymerase chain reaction (RT-PCR) and 5,-rapid amplification of cDNA ends- (5,-RACE) based analyses of cytoplasmic RNA from normal and tumor cells revealed that there is alternative splicing of the first intron between exon I and exon II resulting in 2 additional TF transcripts. One of the transcripts has an extended exon I with inclusion of most of the first TF intron (955 bp), while the second transcript is formed by the insertion of a 495 bp sequence, referred to as exon IA, derived from an internal sequence of the first intron. The full length TF transcript with alternatively spliced novel exon IA, referred to as alternative exon 1A-tissue factor (TF-A), represented ,1% of the total TF transcripts in normal cells, but constituted 7,10% of the total TF transcript in tumor cells. Quantitative real-time RT-PCR analysis indicated that cultured human tumor cells contain 10,25-fold more copy numbers of TF-A in comparison to normal, untransformed cells. We propose that high-level expression of the novel TF-A transcript, preferentially in tumor cells, may have utility in the diagnosis and staging of a variety of solid tumors. © 2005 Wiley-Liss, Inc. [source] |