Noise Attenuation Level (noise + attenuation_level)

Distribution by Scientific Domains


Selected Abstracts


Multiple input,multiple output adaptive feedback control strategies for the active headrest system: design and real-time implementation

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 10 2003
Marek Pawelczyk
Abstract In this article, multiple input,multiple output adaptive feedback control techniques for acoustic noise control in a headrest system are developed. The main goal underlying their design is to provide acoustic comfort to the user, i.e. high noise attenuation level over possibly large areas at the ears. Classical Internal Model Control system does not yield acceptable performance. An approach based on estimates of the residual noise at the ears is then proposed. It is shown that increase in the number of secondary sources to operate for one channel improves the performance. The experiments of tonal noise control are performed on an originally set-up prototype of the active headrest system. The results obtained are illustrated in the promoted form of distribution of zones of quiet. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Exponential H, filtering for switched linear systems with interval time-varying delay

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 5 2009
Dong Wang
Abstract This paper deals with the problem of exponential H, filtering for a class of continuous-time switched linear system with interval time-varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay-derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H, noise attenuation level. Based on the free-weighting matrix approach and the average dwell technology, delay-dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd. [source]


A new finite sum inequality approach to delay-dependent H, control of discrete-time systems with time-varying delay

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2008
Xian-Ming Zhang
Abstract This paper deals with delay-dependent H, control for discrete-time systems with time-varying delay. A new finite sum inequality is first established to derive a delay-dependent condition, under which the resulting closed-loop system via a state feedback is asymptotically stable with a prescribed H, noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H, controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd. [source]


LMI APPROACH TO ROBUST FILTERING FOR DISCRETE TIME-DELAY SYSTEMS WITH NONLINEAR DISTURBANCES

ASIAN JOURNAL OF CONTROL, Issue 2 2005
Huijun Gao
ABSTRACT This paper investigates the problem of robust filtering for a class of uncertain nonlinear discrete-time systems with multiple state delays. It is assumed that the parameter uncertainties appearing in all the system matrices reside in a polytope, and that the nonlinearities entering into both the state and measurement equations satisfy global Lipschitz conditions. Attention is focused on the design of robust full-order and reduced-order filters guaranteeing a prescribed noise attenuation level in an H, or l2 - l, sense with respect to all energy-bounded noise disturbances for all admissible uncertainties and time delays. Both delay-dependent and independent approaches are developed by using linear matrix inequality (LMI) techniques, which are applicable to systems either with or without a priori information on the size of delays. [source]