NOE Data (noe + data)

Distribution by Scientific Domains


Selected Abstracts


The Stereostructure of Porphyra-334: An Experimental and Calculational NMR Investigation.

HELVETICA CHIMICA ACTA, Issue 3 2007
Evidence for an Efficient, Proton Sponge'
Abstract The mycosporine-like amino acid (MAA) porphyra-334 (1) is subjected to extensive 1H- and 13C-NMR analysis as well as to density-functional-theory (DFT) calculations. All 1H- and 13C-NMR signals of 1 are assigned, as well as the resonances of prochiral proton pairs. This is achieved by 500-MHz standard COSY, HMQC, and HMBC experiments, as well as by one-dimensional (DPFGSE-NOE) and two-dimensional (NOESY) NOE experiments. Diffusion measurements (DOSY) confirm that 1 is monomeric in D2O solution. DFT Calculations yield 13C-NMR chemical shifts which are in good agreement for species 6 which is the imino N-protonated form of 1. An exceptionally high proton affinity of 265.7,kcal/mol is calculated for 1, indicating that 1 may behave as a very powerful ,proton sponge' of comparable strength as synthetic systems studied so far. Predictions of 13C-NMR chemical shifts by the ,NMRPredict' software are in agreement with the DFT data. The absolute configuration at the ring stereogenic center of 1 is concluded to be (S) from NOE data as well as from similarities with the absolute configuration (S) found in mycosporine-glycine 16. This supports the assumption that 1 is biochemically derived from 3,3- O -didehydroquinic acid (17). The data obtained question the results recently published by a different research group claiming that the configuration at the imino moiety of 1 is (Z), rather than (E) as established by the here presented study. [source]


Conformational studies of novel estrogen receptor ligands by 1D and 2D NMR spectroscopy and computational methods

MAGNETIC RESONANCE IN CHEMISTRY, Issue 4 2003
Albert B. Sebag
Abstract The solution conformations of the novel estrogen receptor ligands (17,,20E)-(p -trifluoromethylphenyl)vinylestradiol (1) and (17,,20E)-(o -trifluoromethylphenyl)vinylestradiol (2) were investigated in 2D and 1D NOESY studies and by comparison of 13C NMR chemical shifts with theoretical shieldings. The 1H and 13C assignments of 1 and 2 were determined by DEPT, COSY and HMQC experiments. The conformations of the 17,-phenylvinyl substituents of 1 and 2 are of interest because of their differing receptor binding affinities and effects in in vivo uterotrophic growth assays. A statistical method of evaluating contributing conformers of 1 and 2 from predicted 13C shifts of possible structures correlated fairly well with conformational conclusions derived from the NOE data. The 17, substituents of 1 and 2 apparently exist in similar conformational equilibria, suggesting that while 1 and 2 would occupy a similar receptor volume, interactions with the protein may shift the equilibrium and thereby influence the expression of the ligand. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Enhancement of bound-state residual dipolar couplings: Conformational analysis of lactose bound to Galectin-3

PROTEIN SCIENCE, Issue 7 2006
Tiandi Zhuang
Abstract Residual dipolar couplings (RDCs) have proven to be a valuable NMR tool that can provide long-range constraints for molecular structure determination. The constraints are orientational in nature and are, thus, highly complementary to conventional distance constraints from NOE data. This complementarity would seem to extend to the study of the geometry of ligands bound to proteins. However, unlike transferred NOEs, where collection, even with a large excess of free ligand, results in measurements dominated by bound contributions, RDCs of exchanging ligands can be dominated by free-state contributions. Here we present a strategy for enhancement of RDCs from bound states that is based on specifically enhancing the alignment of the protein to which a ligand will bind. The protein is modified by addition of a hydrophobic alkyl tail that anchors it to the bicelles that are a part of the ordering medium needed for RDC measurement. As an illustration, we have added a propyl chain to the C terminus of the carbohydrate recognition domain of the protein, Galectin-3, and report enhanced RDCs that prove consistent with known bound-ligand geometries for this protein. [source]


Application of NMR, molecular simulation, and hydrodynamics to conformational analysis of trisaccharides,

BIOPOLYMERS, Issue 4 2003
Ann M. Dixon
Abstract The preferred conformations and conformational flexibilities of the trisaccharides ,-D-Glcp -(1,2)-,-D-Glcp -(1,3)-,-D-Glcp -OMe (I) and ,-D-Glcp -(1,3)[,-D-Glcp -(1,4)]-,-D-Glcp -OMe (II) in aqueous solution were determined using nuclear magnetic resonance (NMR) spectroscopy, molecular dynamics (MD) and Langevin dynamics (LD) simulations, and hydrodynamics calculations. Both trisaccharides have a vicinal substitution pattern in which long range (nonsequential) interactions may play an important role. LD simulation at 600 K indicated that the all- syn conformation predominated, though other conformations were apparent. NOE data and MD and LD simulations at 298 K all indicated that trisaccharide I is a single all- syn conformer in solution. Given that previous studies showed evidence of anti -conformers in ,-D-Glcp -(1,2)-,-D-Glcp -(1,3)-,-D-Glcp -OMe, this result provides an example of how changing the anomeric configuration of one residue from , to , can make an oligosaccharide more rigid. Discrepancies in inter-ring distances obtained by experiment and by simulation of the all- syn conformer suggest the presence of an anti -, conformation at the ,-(1,4)-linkage for II. A combined analysis of measured and calculated translational diffusion constants and 13C T1 relaxation times yield order parameters of 0.9 for each trisaccharide. This implies that any interconversion among conformations is significantly slower than tumbling. Anisotropies of approximately 1.6 and 1.3 calculated for I and II, respectively, are consistent with the observed relatively flat T1 profiles because the tumbling is not in the motional narrowing regime. Published 2003 Wiley Periodicals, Inc. Biopolymers 69: 448,460, 2003 [source]