NO Signal (no + signal)

Distribution by Scientific Domains


Selected Abstracts


Nuclear factor-kappaB as a molecular target for migraine therapy.

HEADACHE, Issue 4 2003
U Reuter
Ann Neurol. 2002;51:507-516. Nitric oxide (NO) generated from inducible NO synthase (iNOS) participates in immune and inflammatory responses in many tissues. The NO donor glyceryl trinitrate (GTN) provokes delayed migraine attacks when infused into migraineurs and also causes iNOS expression and delayed inflammation within rodent dura mater. Sodium nitroprusside, an NO donor as well, also increases iNOS expression. Because inflammation and iNOS are potential therapeutic targets, we examined transcriptional regulation of iNOS following GTN infusion and the consequences of its inhibition within dura mater. We show that intravenous GTN increases NO production within macrophages. L-N(6)-(1-iminoethyl)lysine, a selective iNOS inhibitor, attenuates the NO signal, emphasizing the importance of enzymatic activity to delayed NO production. iNOS expression is preceded by significant nuclear factor kappa B (NF-kappaB) activity, as reflected by a reduction in the inhibitory protein-kappa-Balpha (IkappaBalpha) and activation of NF-kappaB after GTN infusion. IkappaBalpha degradation, NF-kappaB activation, and iNOS expression were attenuated by parthenolide (3mg/kg), the active constituent of feverfew, an anti-inflammatory drug used for migraine treatment. These findings suggest that GTN promotes NF-kappaB activity and inflammation with a time course consistent with migraine attacks in susceptible individuals. We conclude, based on results with this animal model, that blockade of NF-kappaB activity provides a novel transcriptional target for the development of anti-migraine drugs. Comment: This paper suggesting the localization of NO production in dural macrophages as part of delayed inflammation may indicate proliferation and or recruitment of these cells in migraine. Could this also be a target for drug treatment? Specifically, is the genetic transcription that leads to nitric oxide generation such a target? To amend slightly the old advertising slogan, "when Michael Moskowitz talks, we all listen." DSM and SJT [source]


Three-dimensional distribution of no sources in a primary mechanosensory integration center in the locust and its implications for volume signaling

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 15 2010
Daniel Münch
Abstract Nitric oxide (NO) is an evolutionarily conserved mediator of neural plasticity. Because NO is highly diffusible, signals from multiple sources might combine in space and time to affect the same target. Whether such cooperative effects occur will depend on the effective signaling range and on the distances of NO sources to one another and to their targets. These anatomical parameters have been quantified in only few systems. We analyzed the 3D architecture of NO synthase (NOS) expression in a sensory neuropil, the ventral association center (VAC) of the locust. High-resolution confocal microscopy revealed NOS immunoreactive fiber boutons in submicrometer proximity to both the axon terminals of sensory neurons and their postsynaptic target, interneuron A4I1. Pharmacological manipulation of NO signaling affected the response of A4I1 to individual wind-puff stimuli and the response decrement during repetitive stimulation. Mapping NOS immunoreactivity in defined volumes around dendrites of A4I1 revealed NOS-positive fiber boutons within 5 ,m of nearly every surface point. The mean distances between neighboring NOS-boutons and between any point within the VAC and its nearest NOS-bouton were likewise about 5 ,m. For an NO signal to convey the identity of its source, the effective signaling range would therefore have to be less than 5 ,m, and shorter still when multiple boutons release NO simultaneously. The architecture is therefore well suited to support the cooperative generation of volume signals by interaction between the signals from multiple active boutons. J. Comp. Neurol. 518:2903,2916, 2010. © 2010 Wiley-Liss, Inc. [source]


Three-dimensional distribution of NO sources in a primary mechanosensory integration center in the locust and its implications for volume signaling

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 15 2010
Daniel Münch
Abstract Nitric oxide (NO) is an evolutionarily conserved mediator of neural plasticity. Because NO is highly diffusible, signals from multiple sources might combine in space and time to affect the same target. Whether such cooperative effects occur will depend on the effective signaling range and on the distances of NO sources to one another and to their targets. These anatomical parameters have been quantified in only few systems. We analyzed the 3D architecture of NO synthase (NOS) expression in a sensory neuropil, the ventral association center (VAC) of the locust. High-resolution confocal microscopy revealed NOS immunoreactive fiber boutons in submicrometer proximity to both the axon terminals of sensory neurons and their postsynaptic target, interneuron A4I1. Pharmacological manipulation of NO signaling affected the response of A4I1 to individual wind-puff stimuli and the response decrement during repetitive stimulation. Mapping NOS immunoreactivity in defined volumes around dendrites of A4I1 revealed NOS-positive fiber boutons within 5 ,m of nearly every surface point. The mean distances between neighboring NOS-boutons and between any point within the VAC and its nearest NOS-bouton were likewise about 5 ,m. For an NO signal to convey the identity of its source, the effective signaling range would therefore have to be less than 5 ,m, and shorter still when multiple boutons release NO simultaneously. The architecture is therefore well suited to support the cooperative generation of volume signals by interaction between the signals from multiple active boutons. J. Comp. Neurol. 518:2903,2916, 2010. © 2010 Wiley-Liss, Inc. [source]


NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Shigeyuki Namiki
Nitric oxide (NO) is an intercellular messenger regulating neuronal functions. To visualize NO signalling in the brain, we generated a novel fluorescent NO indicator, which consists of the heme-binding region (HBR) of soluble guanylyl cyclase and the green fluorescent protein. The indicator (HBR,GFP) was expressed in the Purkinje cells of the mouse cerebellum and we imaged NO signals in acute cerebellar slices upon parallel fibre (PF) activation with a train of burst stimulations (BS, each BS consisting of five pulses at 50 Hz). Our results showed that the intensity of synaptic NO signal decays steeply with the distance from the synaptic input near PF,Purkinje cell synapses and generates synapse-specific long-term potentiation (LTP). Furthermore, the NO release level has a bell-shaped dependence on the frequency of PF activity. At an optimal frequency (1 Hz), but not at a low frequency (0.25 Hz) of a train of 60 BS, NO release as well as LTP was induced. However, both NO release and LTP were significantly reduced at higher frequencies (2,4 Hz) of BS train due to cannabinoid receptor-mediated retrograde inhibition of NO generation at the PF terminals. These results suggest that synaptic NO signalling decodes the frequency of neuronal activity to mediate synaptic plasticity at the PF,Purkinje cell synapse. [source]


Concepts of neural nitric oxide-mediated transmission

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2008
John Garthwaite
Abstract As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success. [source]


Stimulation of NMDA and AMPA glutamate receptors elicits distinct concentration dynamics of nitric oxide in rat hippocampal slices

HIPPOCAMPUS, Issue 7 2009
J.G. Frade
Abstract Nitric oxide (,NO) is an intercellular messenger implicated in memory formation and neurodegeneration in the hippocampus. Owing to its physical and chemical properties, the concentration dynamics of ,NO is a critical issue in determining its bioactivity as a signaling molecule. Its production is closely related to glutamate N -methyl- D -aspartate (NMDA) receptors, following a rise in intracellular calcium levels. However, that dependent on ,-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors remains elusive and controversial, despite reports describing a role for these receptors in other brain regions, largely because of lack of quantitative and dynamic measurements of ,NO. Using a ,NO-selective microsensor inserted in the diffusional spread of ,NO in the CA1 region of rat hippocampal slices, we measured its real-time endogenous production, following activation of ionotropic glutamate receptors and under tissue physiological oxygen tension. Both NMDA and AMPA stimulation resulted in a concentration-dependent ,NO production but encompassing distinct kinetics for lag phases and slower rates of ,NO production were observed for AMPA stimulation. Robustness of the results was achieved instrumentally and pharmacologically, by means of nitric oxide synthase (NOS) inhibitors and antagonists of NMDA (D -(,)-2-amino-5-phosphonopentanoic acid, AP5) and AMPA (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide, NBQX) receptors. When using glutamate as a stimulus, ,NO production was of lower magnitude in the presence of AP5 plus NBQX than with AP5 alone, suggesting that even when NMDA receptors are inhibited Ca2+ rises to levels to induce a peak of ,NO from the background. Whereas extracellular Ca2+ was required for the ,NO signals, Philanthotoxin-4,3,3 (PhTX-4,3,3) a toxin used to target Ca2+ -permeable AMPA receptors, attenuated ,NO production. These observations are interpreted on basis of a distinct coupling between the glutamate receptors and neuronal NOS. A role for Ca2+ -permeable AMPA receptors in the Ca2+ activation of neuronal NOS is suggested. © 2008 Wiley-Liss, Inc. [source]


NO signalling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Shigeyuki Namiki
Nitric oxide (NO) is an intercellular messenger regulating neuronal functions. To visualize NO signalling in the brain, we generated a novel fluorescent NO indicator, which consists of the heme-binding region (HBR) of soluble guanylyl cyclase and the green fluorescent protein. The indicator (HBR,GFP) was expressed in the Purkinje cells of the mouse cerebellum and we imaged NO signals in acute cerebellar slices upon parallel fibre (PF) activation with a train of burst stimulations (BS, each BS consisting of five pulses at 50 Hz). Our results showed that the intensity of synaptic NO signal decays steeply with the distance from the synaptic input near PF,Purkinje cell synapses and generates synapse-specific long-term potentiation (LTP). Furthermore, the NO release level has a bell-shaped dependence on the frequency of PF activity. At an optimal frequency (1 Hz), but not at a low frequency (0.25 Hz) of a train of 60 BS, NO release as well as LTP was induced. However, both NO release and LTP were significantly reduced at higher frequencies (2,4 Hz) of BS train due to cannabinoid receptor-mediated retrograde inhibition of NO generation at the PF terminals. These results suggest that synaptic NO signalling decodes the frequency of neuronal activity to mediate synaptic plasticity at the PF,Purkinje cell synapse. [source]